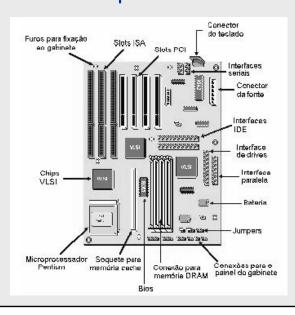
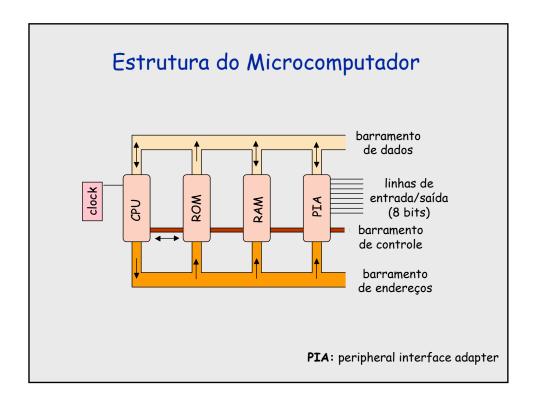

Microcomputadores

 aplicações: processamento de dados aquisição de dados controle de um sistema (com ou sem realimentação)


· microcomputador:

Microcomputadores


- CPU (unidade central de processamento):
 - controla o fluxo de bytes
 - realiza cálculos, comparações e transferência de bytes
- · memórias:
 - ROM (read only memory): permanente, leitura, instruções iniciais
 - RAM (random access memory): volátil, leitura/escrita, armazena dados/programas do usuário
- teclado: comunicação com o usuário (entrada de dados)
- vídeo: comunicação com o usuário (saída de dados)
- discos: saída/entrada de dados
- periféricos: impressora, scanner, plotter

Microcomputador Pentium

Estrutura do Microcomputador

- · CPU é conectada a 3 barramentos:
 - endereços: especifica qual byte da ROM ou RAM está sendo operado ou qual periférico está sendo acessado
 - dados: transferência de bytes para a ou da CPU
 - controle: determina a operação que está sendo realizada
- sinais digitais: duração controlada por um clock (base tempo do microcomputador)

Transferência de Bytes

- toda operação da CPU é feita em transições (HI-LO ou LO-HI) do clock
- · circuitos (RAM, ROM) sincronizados com a CPU
- · sincronização feita através do barramento de controle
 - · CPU 6502 e 6800:
 - bit de controle \overline{R} / W determina leitura / escrita
 - leitura:

 dado (colocado pela ROM ou RAM)

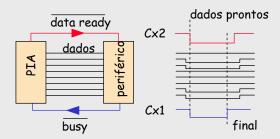
 endereço (colocado pela CPU)

 clock ϕ_2 \overline{R} / W (HI = ler)

 dado no latch da CPU

,

Transferência de Bytes


: nível lógico não importa ::: alta impedância

Transferência Externa de Bytes

- PIA: permite a comunicação da CPU com outros sistemas que podem não estar sincronizados com o clock do microcomputador
 - teclado
 - impressora
 - vídeo
 - "porta do usuário"
 - · PIA: peripheral interface adapter
 - PIO: peripheral input / output
 - PPI: programmable peripheral interface
- · dispositivo transmite byte se o outro estiver pronto para recebê-lo
- · linhas de controle: do microcomputador para o periférico
 - do periférico para o microcomputador
- · "handshaking"

Transferência Externa de Bytes

• transmissão:

- · micro: coloca byte na linha da PIA, Cx2 = LO, espera "flag"
- periférico: Cx1 = LO (lendo), Cx1 = HI (OK), aciona flag (PIA)
- · micro: monitora flag (PIA), limpa o flag e Cx2 = HI

Transferência Externa de Bytes

· recepção:

- · micro: Cx2 = LO (OK), espera "flag" (PIA) ser acionado
- periférico: Cx1 = LO (preparando),Cx1 = HI (OK), aciona flag (PIA)
- · micro: lê dados, limpa flag e Cx2 = HI

Interrupções

- barramento de controle da CPU contém pelo menos uma linha que pode ser usada para interromper a execução de um programa
- · interrupção realizada por dispositivo externo à CPU:
 - CPU suspende temporariamente a execução de um programa
 - armazena dados/endereços necessários para continuar tarefa posteriormente
 - executa programa requerido pela interrupção, armazenado em determinado endereço
 - retorna ao programa anterior
- · rotinas de interrupção no sistema operacional do micro
- · interrupções têm diferentes graus de prioridade

Programação

- conjunto de instruções necessárias para que o micro realize determinadas tarefas
- · linguagens:

máquina: códigos binários
 assembler: mnemônicos

- alto nível: QuickBasic, VBasic, VisualC, etc.

• compilador: transforma programa em linguagem de alto nível em outro em linguagem de máquina

· exemplo: desvio incondicional

- QBasic: GOTO nome

- Assembler: JMP aa (aa = endereço de memória - hexa)

- Máquina: C3_h aa = 11000011 aa