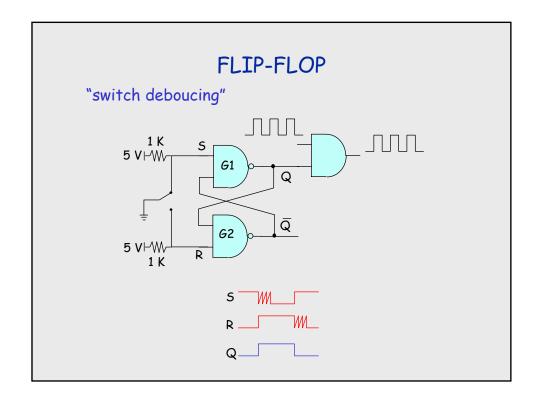
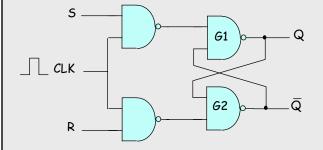


- · dispositivo com memória
- · uso em contadores, acumuladores, latches


NAND			
В	Q		
0	1		
0	1		
1	1		
1	0		
	B 0 0 1		

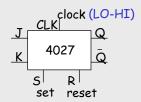
5	R	Q	Q
1	1	0	1
1	1	1	0


(dois estados estáveis) indeterminado

- se S = 0 e R = 1, então Q = 1 e $\overline{Q} = 0$
- · se 5 mudar de estado, as saídas não se alteram
- se S = 1 e R = 1, então Q = 1 e $\overline{Q} = 0$
- · se R mudar de estado, as saídas se alteram
- se S = 1 e R = 0, então Q = 0 e $\overline{Q} = 1$

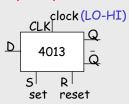
NAND			
Α	В	Q	
0	0	1	
1	0	1	
0	1	1	
1	1	0	

5	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	?


- os sinais lógicos das entradas S e R estão bloqueados enquanto o clock estiver em nível baixo (LO)
- os sinais serão transferidos ao flip-flop quando o clock estiver em nível alto (HI)
- · S e R podem ser entradas de dados

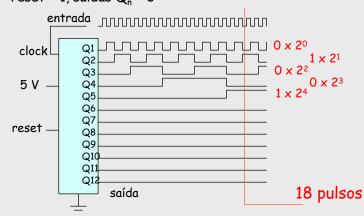
Flip-Flop Mestre-Escravo sensível à transição

- · possui dois flip-flops (mestre e escravo)
- enquanto o clock estiver HI ou LO:
 - saída do flip-flop mestre igual à entrada
 - entrada do flip-flop escravo está desabilitada
- · na transição do clock (HI-LO ou LO-HI)
 - mestre é desconectado da entrada
 - saída do mestre é transferida para a entrada do escravo

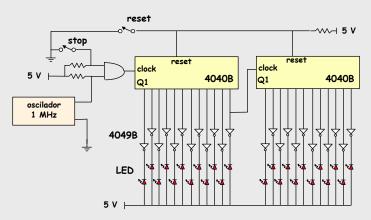

Flip-Flop Mestre-Escravo sensível à transição

• flip-flop JK:

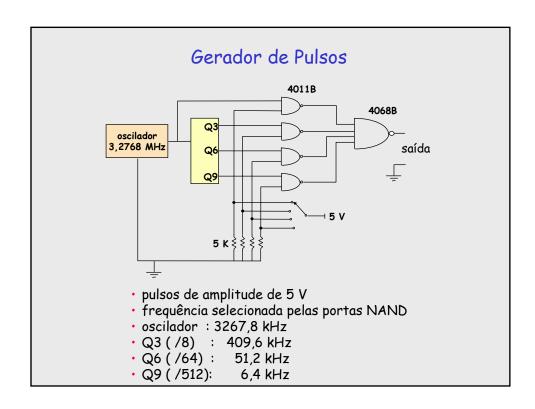
CLK	S	R	J	K	Q_{n+1}
\uparrow	0	0	0	0	Q
\uparrow	0	0	0	1	0
\uparrow	0	0	1	0	1
\uparrow	0	0	1	1	Q
-	0	1	-	-	0
-	1	0	-	-	1


· flip-flop D:

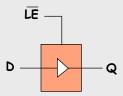
CLK	D	S	R	Q	Q
1	0	0	0	0	1
↑	1	0	0	1	0
\downarrow	-	0	0	Q	Q
-	-	1	0	1	0
-	-	0	1	0	1
-	-	1	1	1	1


Contador de 12 bits (4040B)

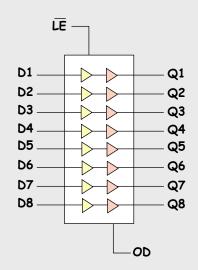
- uma entrada (clock input); 12 saídas paralelas (0 4095)
- · sensível à transição HI-LO (incrementa uma unidade)
- reset = 1, saídas Q_n = 0



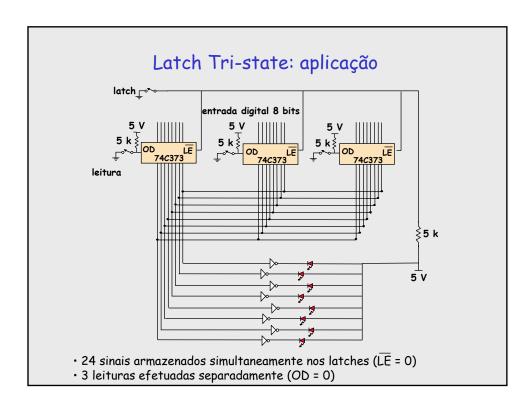
- · pode ser usado como um divisor:
 - Q1 divide por 2; Q2 divide por 4; Q12 divide por 4096



- · contador de 24 bits (~ 16 milhões)
- reset = 1, saídas Q_n = 0
- · 4049B é um buffer que fornece corrente (5 mA) para acender os LED's
- contagem é iniciada/parada através da chave que habilita/desabilita a porta AND, ligada ao clock


Latch Tri-state

- · importante na transmissão de sinais digitais do e para o PC
- latch pode armazenar ("trancar") um dado, enquanto sua saída estiver em alta impedância (tri-state)
- conexão de várias entradas/saídas em um mesmo barramento de dados (bus)



- Q = D, quando \overline{LE} = 1 (transparente)
- quando LE = 0, Q mantem seu nível lógico, independente do estado de D

Latch Tri-state

- JL em LE, dados D_n armazenados no latch na transição HI-LO
- OD = 1, tri-sate
- OD = 0, dados apresentados nas saídas Q_n

