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bstract

This work describes the use of a multi-LED photometer for discrimination of mineral water samples, employing chromogenic reagents and
hemometric techniques. Forty-five water samples (including 7 different brands of mineral water and samples of deionised, distilled and tap waters)
ere analysed in a monosegmented flow system, using three different chromogenic reagents (murexide, PAR and eriochrome black T) in a pH 10.0
H3/NH4

+ buffer in separate injections. Measurements were performed at 470, 500, 525, 562, 590, 612, 636 and 654 nm. Analyses were carried
ut using PCA, employing data sets including absorbance values obtained with one, two or all three reagents, which comprise 8, 16 or 24 variables,
espectively. The best result was obtained with the data set from murexide and eriochrome black T, providing a clear distinction between 9 groups
distilled and deionised waters were classified in the same group). Based on the loading values, it was possible to select four wavelengths (470,
00, 590 and 654 nm) that provided a similar discrimination. With the use of these four LED, an HCA was performed, providing discrimination
etween 8 groups at a similarity level of 0.88. A model based on SIMCA allowed correctly classifying 94% of the samples. The discrimination

etween different groups is due to the metal ion contents in the water samples, mainly calcium and magnesium. Therefore, the use of common
omplexing reagents, such as murexide and erichrome black T, a multi-LED photometer and chemometric techniques provide an easy and simple
ethod for water discrimination.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Chemometric methods, such as principal component analy-
is (PCA), hierarchical cluster analysis (HCA), soft independent
odelling of class analogy (SIMCA), discriminant analysis

DA) and neural Networks have been employed for charac-
erisation and classification of a great variety of samples. The
iscrimination of soils [1], pen inks [2], fuels [3], wines [4],
live oils [5], milk [6], coconut water [7] and waters [8] are
mongst some examples of application of these methods, which
re of great interest in agronomy, archaeology, food engineering,
edicine, environmental chemistry and forensic science.

Pattern recognition, as these methods are commonly known,

s based on the composition of the samples and/or their chemical-
hysical properties, such as pH, density, viscosity and so on.

∗ Corresponding author. Tel.: +55 19 3521 3136; fax: +55 19 3521 3023.
E-mail address: ivo@iqm.unicamp.br (I.M. Raimundo Jr.).
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ifferent techniques have been employed to provide data for
attern recognition, including gas chromatography [9], mass
pectrometry [10], atomic spectrometry [11], fluorescence spec-
rometry [12] and spectrophotometry [13]. Frequently, these
echniques provide large data sets, as it seems to be necessary to
btain enough information from the samples to allow perform-
ng proper classifications. Recently, arrays of sensors have been
roposed for classification purposes of different kind of samples.
hey are known as electronic tongues [14] or electronic noses

5], according to their application in liquids and gaseous media,
espectively. In these kinds of arrays, the sensors do not neces-
arily have to be extremely selective, as discrimination is often
ccomplished due to differences in the responses of each sensor
o the analytes present in the samples. The main drawback of
hese kinds of sensor arrays, especially the electronic noses, is

hat the temperature must be controlled within a narrow range, in
rder to provide reproducible data for multivariate calibration.

UV-Vis-NIR spectrophotometry is a useful tool for pattern
ecognition, as spectrophotometers, multichannel or Fourier

mailto:ivo@iqm.unicamp.br
dx.doi.org/10.1016/j.aca.2007.05.059
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ransform-based, can provide large data sets in short periods of
ime, with good resolution, detectivity and accuracy. Although
he discrimination process can be performed by employing the
hole spectra (which can contain values obtained in hundreds
f wavelengths), usually a variable selection is carried out in
rder to eliminate the wavelengths which carry no information
r even add noise to the classification model. In addition, algo-
ithms have been proposed for variable selection, also aimed at
inimising correlated variables, providing more robust and par-

imonious models [15]. Considering these aspects, a multi-LED
hotometer seems to be a simple alternative for the realisation
f pattern recognition, as measurements at a few wavelengths
an provide enough information for obtaining a proper model
or classifications.

In recent years, mineral water has becoming more popular
n many countries. This fact can be confirmed by the number
f brands of mineral water offered in the supermarkets. As a
onsequence, there is an increased concern regarding the qual-
ty of mineral waters as well as the possibility of falsification by
ddition of tap water. The chemical composition of a mineral
ater depends on the soil from which it was extracted. Physical

nd chemical parameters are used to identify a mineral water,
hich are printed on the label of the commercialised bottle, for

nstance, pH, conductivity, dissolved total solids, and sodium,
alcium, magnesium, chloride, bicarbonate and sulphate con-
ents, to mention a few commonly listed ions. Obviously, these
arameters are useful for water discrimination when employing
ultivariate analysis (PCA and HCA), as proposed by Caselli

t al. [11]. However, this approach presents as a principal disad-
antage the necessity of performing many measurements, based
n atomic spectrometry (for metal ions) and ion chromatog-
aphy (for anions), which are time consuming and expensive.
s an alternative, Versari et al. [8], employing PCA, HCA

nd DA, carried out a classification of mineral waters based
n the information reported on the labels of the commercial
ottles, which is not a recommended procedure as the values
xpressed on these labels are average values and do not rep-
esent the real concentration of the metal ions in the sample.
ecently, electronic tongues have been also proposed for clas-

ification purposes. Martı́nez-Máñez et al. [14] employed an
rray of 12 electrodes (thick films of RuO2 10 �/sq, RuO2
M�/sq, C, Ag, Ni, Cu, Au, Pt, Al, and small sticks of Sn, Pb
nd graphite) for classification of six Spanish mineral waters,
ap waters and osmotised water, which was accomplished with
CA and neural networks. Moreno et al. [16] constructed an
rray of ISFET sensors and interdigitated platinum electrodes
for measurements of pH, conductivity, redox potential, Na+,

+, Ca2+ and Cl−), which was applied to classification of 13
rands of mineral water based on PCA, HCA and SIMCA
pproaches. Gallardo et al. [17] developed an array of nine elec-
rodes based on PVC membranes, selective to H+ (2 different
onophores), Li+, NH4

+, Na+, K+, Ca2+ and two “generics”
with non-specific ionophores), for classification of 23 water

amples (natural mineral, natural sparkling mineral, CO2 added
ineral, gas added mineral and tap waters, as well as lemon-

de) by employing PCA. Proper classifications were obtained
ith these electronic tongues, which present as a drawback
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he possibility of sensor poisoning as well as their useful life-
ime.

Recently, we have proposed a photometer based on an array
f eight LED, which was successfully applied to the simultane-
us determination of Zn(II) and Cu(II) in pharmaceutical and
etal alloy samples, by employing multiple linear regression

18]. The LED photometer possesses as main characteristics
implicity, low cost, low power consumption and portability,
hich make it useful for on-site measurements. Although it is
ot as versatile as a spectrophotometer, there are a great vari-
ty of LED in the market (they are available from UV to NIR
egion of the spectrum), allowing the construction of a ded-
cated instrument for a specific application. Therefore, in the
resent work, the use of this photometer as a tool for dis-
rimination of waters is described. They were mixed with a
hromogenic reagent (murexide, PAR or eriochrome black T) at
H 10.0 (NH3/NH4

+ buffer) for obtaining the spectral data set.
monosegmented flow system, employing a simultaneous mul-

iple injection approach [19], was used to facilitate the mixing
f the solutions and to avoid sample dispersion, allowing to scan
ll LED of the array while the sample zone is inside the flow cell.
iscriminations and classifications of 45 water samples (includ-

ng mineral, tap, deionised and distilled waters) were performed
y employing principal component analysis (PCA), hierarchi-
al clustering analysis (HCA) and soft independent modelling
f class analogy (SIMCA).

. Experimental

.1. Reagents and solutions

Analytical grade reagents and deionised water were
mployed for preparation of all solutions. A 0.32 mol L−1

mmonium buffer solution was prepared by mixing proper
mounts of concentrated ammonia solution and ammonium
hloride salt and adjusting the pH to 10.0. Solutions of 4-(2-
yridylazo)resorcinol (PAR) and eriochrome black T (EBT)
ere prepared by dissolution of appropriate quantities of the

espective salts to obtain a concentration of 0.30 mmol L−1.
n ammonium purpurate (murexide) solution at the same

oncentration was prepared in 10% (v/v) aqueous ethanol.
hromogenic reagent solutions were prepared just before use.
ineral water samples were acquired in a local market and were

nalysed without any pre-treatment.

. Instrumentation

All measurements were carried out with a multi-LED pho-
ometer constructed in our laboratory [18], equipped with eight
ED (maximum emissions at 470, 500, 525, 562, 590, 612,
36 and 654 nm) as light sources and a photodiode (RS 308-
67) as detector. Optical fibres were employed to guide the
ight to and from the flow cell (10 mm optical path). Software

ritten in Microsoft VisualBasic 3.0 was employed to control

he photometer with the aid of a parallel interface PCL-711S
Advantech), furnished with a 12-bit A/D converter. Measure-
ents were performed by sequentially turning on/off all the LED
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inations can be performed by employing few variables (around
10) [14,16,17].

For a discriminatory analysis, it is fundamental that the mea-
sured parameters (variables) reflect the singular characteristics

Table 1
Characteristics of the mineral water samples as shown on the labels of the bottles

Fountain Samples [Ca2+]
(mg L−1)

[Mg2+]
(mg L−1)

Hardness
(mg L−1)

Levı́ssima 7 0.57 0.35 0.92
Leve 5 7.03 2.84 9.86
Purified 4 10.40 4.80 15.20
ig. 1. Diagram of the monosegmented flow system employed to manage the so
ext for details.

f the array, while the sample was passing through the flow
ell.

. Procedure

The monosegmented flow system employed to manage the
olutions is shown in Fig. 1. The simultaneous multiple injection
pproach [19] was adopted as a means of mixing water sample
nd chromogenic reagent solutions. A peristaltic pump (Ismatec
P-13 R) was employed to impel carrier fluid (deionised water)

nd air (that fills loops L1 and L2, 50 �L each) and to aspi-
ate chromogenic reagent solution (loops L3 and L4, 40 �L
ach), buffer solution (loops L5 and L6, 50 �L each) and sam-
le solution (that fills loop L7, 50 �L). When the proportional
njector was placed in the injection position, the monosegment
ontaining the solutions (water sample, buffer and reagent) was
omogenised while it was pumped through the reaction coil
50 cm long, 0.7 mm i.d.), towards the detection cell (10 mm
ptical path). While the sample monosegment was passing
hrough the cell, the photometer was able to perform 10 measure-

ents for each LED (80 acquisitions), which were then averaged
o obtain the signal intensities.

. Data set, data pre-treatment and calculations

The variables employed in the calculations were the sig-
al intensities acquired with each LED of the array, employing
he three chromogenic reagents. Thus, the original data set is
escribed by a matrix which has 135 rows and 24 columns.
he 135 rows represent the samples (triplicate measurements

or all 45 water samples), while the 24 columns represent
he variables (signal intensities obtained with each 8 LED
mploying 3 chromogenic reagents). It is important to empha-
ise that 45 samples were studied, although three replicate
easurements were inserted in the data set, as a means of

bserving signal variations due to instrumental noise. The

hemometric studies were performed with all samples, while
he number of variables was altered in order to evaluate the
erformance of each reagent. The raw data were mean-centred
efore performing the chemometric studies. The Unscram-

Y
S
A
N

s. (P) Peristaltic pump; (W) waste; (L1–L7) injection loops; (D) flow cell. See

ler 7.5 (CAMO) was employed to run PCA and SIMCA,
nd Pirouette 2.11 (Infometrix) was used for HCA calcula-
ions.

. Results and discussion

The objective of pattern recognition is to find the similarities
nd differences among many samples, based on a set of previ-
usly measured properties. With this approach it is possible to
nhance knowledge about a data set by means of natural group-
ngs of different samples (unsupervised pattern recognition) or
y constructing a model able to classify new samples (super-
ised pattern recognition) [20]. When the number of parameters
variables) measured for each sample is small (3 or less) and
ach of them possesses information with high discriminatory
haracter, similarities and differences can be easily observed
y plotting the measured variables for each sample in a three-
imension graph. Unfortunately, this is not the usual case and
attern recognition based on UV-Vis-NIR spectroscopy requires
ens or even hundreds of variables, even though an algorithm for
ariable selection is often employed in order to eliminate wave-
engths that introduce noise and redundancies in the models,
eading to a more robust and parsimonious classification [15].
n addition, electronic tongues have proved that good discrim-
cuara 6 6.22 9.06 15.28
ão Bernardo 4 13.23 4.96 18.19

´ gua Santa 7 16.40 8.34 24.74
. S. Aparecida 3 39.90 12.90 52.80
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f the sample sets that are under observation. In the present
ork, mineral water samples acquired in the local market present
oticeable differences in the concentrations of Ca2+ and Mg2+

ons, as indicated by their respective labels, whose values are
isted in Table 1. The total concentration of these ions gives the
ardness of the water, which can be determined by complexo-
etric titration with standard EDTA solution. In this titration,
urexida and EBT are usually employed for end point indi-

ation, as they form complexes with these metal ions, whose
olours are different from those of the free indicators. There-
ore, in the present work, murexide and EBT were used in
he photometric analysis of waters, aimed at obtaining infor-
ation regarding their hardness, which was the basis of the
lassification. In addition, PAR was also used, as a means of
cquiring information about others metal ions, such as Zn(II)
nd Mn(II).

ig. 2. Scores graphs for PCA performed with spectral data obtained with eri-
chrome black T (A), PAR (B) and murexide (C) acquired datas. Values in
arenthesis indicate the explained variance of the principal component.
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Mineral water samples from 6 different sources (6 differ-
nt brands) and one mineralised water (purified water to which
alts were added) were analysed. In order to improve the vari-
bility of the samples (due to different weather conditions, that
s, rainy and dry periods), waters with different bottling dates
ere acquired, covering periods of two (minimum) to seven

maximum) months for the same brand of water. Three samples
ach of deionised, distilled and tap waters were also included in
he study, aimed at observing the performance of the method,
hich would indicate its capability of identifying adulteration
f mineral waters.

Initially, exploratory analyses based on PCA were performed,
y employing data sub-sets obtained with measurements using
ach one of the chromogenic reagents (135 samples and 8
ariables in each case). The raw data were previously mean-
entred and the obtained models were validated with full
ross-validation approach. This study showed that three prin-
ipal components were sufficient to virtually explain all the
ariance of the data set and, therefore, this number of PC was
mployed throughout the work.

Fig. 2 shows the results obtained for each complexing agent,
ased on the score graphs for the two first PC, by employing
ignal intensities of all eight LED of the photometer. It can be

een from the graphs that it is possible to identify many groups of
amples, formed basically along PC1, which explains more than
6% of the total variance in all cases. The distinction between
hese groups is more pronounced for the analysis performed

ig. 3. Scores (A) and loadings (B) graphs for PCA performed with combined
ata obtained with all reagents. Values in parenthesis indicate the explained
ariance of the principal component.
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Table 2
Data sets employed for model construction and prediction in the SIMCA
classification

Fountain Samples Model Prediction

Levı́ssima 7 4 3
Leve 5 3 2
Purified 4 3 1
Ycuara 6 3 3
São Bernardo 4 3 1
Água Santa 7 4 3
N. S. Aparecida 3 2 1
T
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ig. 4. Scores graphs for PCA performed with the combined data for EBT (500
nd 654 nm) and murexide (470 and 590 nm). Values in parenthesis indicate the
xplained variance of the principal component.

ith EBT and murexide, which can be explained based on the
act that these reagents are more sensitive to the alkaline earth
etal ions Ca2+ and Mg2+ than is PAR. It can also be noted

hat these reagents provide different grouping for the samples;
or example, in graph 2a “Leve”, “Purified” and “Tap” water
amples are clearly separated, while in Fig. 2C, “Ycuara” and
N.S. Aparecida” are better grouped.

Due to these observations, exploratory analyses with PCA
ere also performed combining the data obtained with all

hree reagents (24 variables) and those obtained with murexide
nd EBT (16 variables), employing the same conditions above
escribed. In both cases, a better discrimination among the sam-
le groups was observed, as a result of the use of a number of
ariables higher than 8. Nine groups were formed along PC1
nd PC2, distinguishing the water samples according to their

ources, as can be seen in Fig. 3A. As expected, samples of
eionised and distilled waters formed a single group, as their
etal ion contents are virtually null. In addition, PC1 tends to

istinguish the groups according to the hardness of the water

w
s

a

ig. 5. Dendrogram for HCA performed with combined data obtained with EBT (50
istances and complete connexion.
ap 3 2 1
istilled 3 2 1
eionised 3 2 1

amples, from “N.S. Aparecida” to deionised/distilled waters.
his behaviour is not strictly obeyed, as the values of hardness
ere taken from the labels of the water bottles and may not

epresent the correct values.
Fig. 3B shows the graph of loadings for each variable

mployed for this classification. It can be noted that most of the
AR variables does not have a significant influence in the cal-
ulation of both PC, except for wavelengths of 500 and 525 nm
hat affect PC2. Although these two variables have some influ-
nce on the PC calculation, none PAR variables were employed
n the subsequent studies. The graph of loadings also shows that
he most important variables for murexide are 470 and 590 nm,
hile for EBT are 500 and 654 nm. A PC analysis performed
ith those four variables produced the classification shown in
ig. 4, in which all the nine groups are clearly separated. PC
nalysis carried out by using 16 variables (murexide and EBT
lus all LED) and eight variables (the four above mentioned

avelengths and both reagents) provided results similar to those

hown in Fig. 4.
A hierarchical cluster analysis (HCA) was also performed,

s a means of confirming if the data provided are sufficient for a

0 and 654 nm) and murexide (470 and 590 nm). Mean-centred data, Euclidian
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Table 3
Results obtained for SIMCA classification at 95% of confidence level

Fountain Number of
replicates

Replicates included
in its own class

Replicates included
in a wrong class

Replicates not
classified

Classification
rate (%)

Levı́ssima 9 8 0 1 89
Leve 6 6 0 0 100
Purified 3 3 0 0 100
Ycuara 9 7 0 2 78
São Bernardo 3 3 0 0 100
Água Santa 9 9 0 0 100
N
T
D

g
a
a
d
(

S

w
t
n
v
a
v

o
c
A
c
l
P
s
0
t
a
d
s
b
s

d
c
s
s
d
p
m
v
o
w
P
w

a
c
2
p
p
c
r

7

i
w
a
l
m
S
w
a
s
m
p
t
o

A

s
m
f

R

. S. Aparecida 3 3
ap 3 3
istilled and deionised 6 6

ood discrimination. HCA is a statistical method for exploratory
nalysis different from PCA, in which the samples are grouped
ccording to the distances between them. These distances can be
etermined in different ways [20], being employed in similarity
S) calculations, according to the equation:

ab = 1 − dab

dmax
,

here dab is the distance between samples a and b, and dmax is
he largest distance found between all samples. If the S value is
ear zero, the samples are very dissimilar, while the opposite is
alid if the value is close to one. A bi-dimensional graph, called
dendrogram, is then constructed based on the S values, making
isible the grouping of the samples.

Fig. 5 shows the dendrogram obtained with a HCA carried
ut with the above mentioned four variables, employing mean-
entred data, Euclidian distances and complete connexion [20].
t a similarity level of 0.88, eight groups are formed, which are

ounted by the number of vertical lines that cross the horizontal
ine at this level. The groups are similar to those obtained with
CA, except for the samples from the “Ycuara” and “Levı́ssima”
ources, which belong to the same group. At a similarity of
.90, excluding one tap water sample, ten groups are formed;
he samples “Ycuara” and “Levı́ssima” are in different groups,
s expected, while the “Leve” samples are also separated, which
oes not occur in the PC analysis. Although there is not a level of
imilarity able to discriminate the samples as PCA does, it can
e affirmed that the information provided by the four variables is
ufficient for a good discrimination by employing both methods.

For SIMCA classification, the 45 water samples were ran-
omly divided into two groups; one for constructing the
lassification model (28 samples) and one for prediction (17
amples), respectively, as indicated in Table 2. As each water
ample was injected in the flow analyser in triplicate, the total
ata set consisted of 135 values (84 for calibration and 51 for
rediction). All SIMCA models were constructed by employing
ean-centred data, the four selected variables and full cross-

alidation. The number of latent variables was determined based

n the validation error, by using the default settings of the soft-
are The Unscrambler 7.5. As SIMCA classification is based on
CA, a single model was constructed for deionised and distilled
ater samples, instead of one model for each class.
0 0 100
0 0 100
0 0 100

Table 3 shows the results obtained with SIMCA classification
t a confidence level of 95%. As can be seen, SIMCA did not
orrectly classify three injected water samples (1 Levı́ssima and
Ycuara), providing a classification rate of 94%. These sam-

les were not classified in any of the nine classes of the model,
roviding three errors of type-I (object not included in its own
lass) and no error of type-II (object included in a wrong class),
esults that indicate the good performance of the instrument.

. Conclusions

A simple photometer, based on an array of eight LED,
s a useful tool for performing discrimination of mineral
aters. The method employs measurement with two complexing

gents (murexide and eriochrome black T), generating ana-
ytical signals that are proportional to the metal ion contents,

ainly Ca2+ and Mg2+, in the water samples. PCA, HCA and
IMCA approaches are able to correctly discriminate or classify
ater samples according to their sources, demonstrating that
complete characterisation of the samples, employing atomic

pectrometry, to perform this task is not necessary. Finally, the
onosegmented flow system provides an ease and rapid way to

rocess the samples, avoiding dispersion, which would impair
he precision of the measurements, as many data points must be
btained when the sample zone is passing through the flow cell.
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