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bstract

This paper proposes a novel wavelet denoising method, which exploits the statistics of individual scans acquired in the course of a coaveraging
rocess. The proposed method consists of shrinking the wavelet coefficients of the noisy signal by a factor that minimizes the expected square error
ith respect to the true signal. Since the true signal is not known, a sub-optimal estimate of the shrinking factor is calculated by using the sample

tatistics of the acquired scans. It is shown that such an estimate can be generated as the limit value of a recursive formulation. In a simulated
xample, the performance of the proposed method is seen to be equivalent to the best choice between hard and soft thresholding for different
ignal-to-noise ratios. Such a conclusion is also supported by an experimental investigation involving near-infrared (NIR) scans of a diesel sample.
t is worth emphasizing that this experimental example concerns the removal of actual instrumental noise, in contrast to other case studies in the

enoising literature, which usually present simulations with artificial noise. The simulated and experimental cases indicate that, in classic denoising
ased on wavelet coefficient thresholding, choosing between the hard and soft options is not straightforward and may lead to considerably different
utcomes. By resorting to the proposed method, the analyst is not required to make such a critical decision in order to achieve appropriate results.

2006 Elsevier B.V. All rights reserved.
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. Introduction

A usual approach to improving the signal-to-noise ratio
SNR) in an instrumental signal consists of carrying out repeated
easurements and coaveraging the individual scans [1,2]. How-

ver, the number of scans cannot be arbitrarily large because of
ime constraints, as well as drift in the intensity and wavelength
xes. An alternative consists of applying signal processing tech-
iques to further reduce the noise in the coaveraged signal. Such
procedure is termed “denoising” [3,4], “filtering” [5] or “noise
uppression” [6,7].
In this context, the discrete wavelet transform (DWT) may

e a useful tool [8]. For this purpose, the signal is converted to
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he wavelet domain, usually by a filter bank algorithm [9], and
transformation is applied to attenuate (“shrink”) the wavelet

oefficients with low signal-to-noise ratio. A simple procedure
onsists of maintaining the approximation coefficients (low-
requency components of the signal) of the DWT, while replac-
ng all the detail coefficients (high-frequency components of
he signal) with zeros [10]. Such an approach assumes that the

ost important signal features are concentrated in low frequen-
ies, whereas the high-frequency components are dominated by
oise. More elaborate methods usually employ an apodization
peration, in which coefficients below a given threshold are
eplaced with zeros. The remaining coefficients can be kept unal-
ered (“hard thresholding”) or can be decreased by the threshold
alue (“soft thresholding”) [11].

Apodization methods require a judicious choice of a thresh-

ld, which may not be trivial if the noise statistics (or at least
he noise intensity) is unknown. In a seminal paper, Donoho
11] proposed a criterion known as universal threshold, which
as been used in several papers thereafter [4,6,12]. A number

mailto:laqa@quimica.ufpb.br
dx.doi.org/10.1016/j.aca.2006.07.078
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f comparisons between Donoho’s wavelet denoising with other
ltering techniques have been reported [3,10,13,14].

Barclay et al. [4] compared wavelet denoising with Savitzky-
olay (SG) smoothing and discrete Fourier transform (DFT)
ltering and concluded that the wavelet-based techniques pro-
ide better results. Similar findings were also presented in [3,14].

In this work, an alternative wavelet denoising method for sig-
als obtained by a coaveraging procedure is proposed. Denoising
s carried out by attenuating (“shrinking”) the wavelet coeffi-
ients in order to minimize the expected square error between
he reconstructed and the “true” signals. Since the true signal is
ot known in practice, a sub-optimal estimate of the shrinking
actor is calculated by using sample statistics of the acquired
cans. A mathematical development is presented to show that
uch an estimate can be generated as the limit value of a recur-
ive formulation.

The proposed strategy is compared with hard and soft thresh-
lding in a simulated example. Moreover, an experimental study
s carried out by using near-infrared (NIR) spectral scans of a
iesel sample. In this case, rather than using simulated noise,
he investigation is concerned with actual instrumental noise.

. Background and theory

.1. Notation

A sequence of elements indexed by λ is denoted by {x(λ)} or,
hen there is no need to specify the indexing element, simply by

. A single element of the sequence is indicated as x(λ). Operator
denotes the expected value of a random variable.

.2. Discrete wavelet transform

As described in the wavelet literature [8,9], the DWT of a
ignal {x(λ)}, λ = 1, 2, . . ., J, can be calculated in a fast man-
er by using a bank of digital filters of the form depicted in
ig. 1. The basic structure of this filter bank consists of a pair
f low-pass (H) and high-pass (G) filters followed by a down-
ampling operation, which consists of discarding every other
oint of the filter outputs. Filters H and G usually have finite
ength (that is, finite impulse response) and can be chosen such
hat the overall transformation is orthogonal, thus preserving the
nformation content of the input signal. The first filtering/down-

ampling operation results in two sequences {c1(k1)} (low-pass)
nd {d1(k1)} (high-pass), with k1 = 1, . . ., J/2. Sequences c1 and
1 are termed first-level approximation and detail coefficients,
espectively. Each approximation and detail coefficient is associ-

ig. 1. Wavelet filter bank with two decomposition levels. H and G represent
ow-pass and high-pass filters, respectively, whereas ↓2 denotes the down-
ampling operation.
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ted to a region of the original sequence x. Therefore, the position
nformation is partially retained by DWT.

Sequence {c1(k1)} can be further decomposed to generate
equences {c2(k2)} (second-level approximation coefficients)
nd {d2(k2)} (second-level detail coefficients), with k2 = 1, . . .,
/4. If this procedure is repeated up to the Nth decomposition
evel, the final result is a sequence {t(k)}, k = 1, . . ., J, formed by
oncatenating the level-N approximation coefficients (cN), and
ll detail coefficients (dN, . . ., d1). In this case, the approxima-
ion coefficients cN comprise the low-frequency components of
, the detail coefficients d1 are associated to the high-frequency
omponents, and the remaining detail coefficients account for
ntermediate frequencies. As can be seen, DWT performs a fre-
uency decomposition of the input signal, which is similar to the
pplication of a DFT. However, in contrast to DFT, the position
nformation is partially retained by DWT, as mentioned above.
herefore, localized features in the original domain (such as
harp peaks), which are spread over the entire frequency domain
n DFT, may be concentrated in a small number of wavelet coef-
cients. Such an attribute is of value in denoising applications,
ecause it allows signal features to be more easily distinguished
rom background noise.

Choosing the best number of decomposition levels in DWT is
till an open problem. As reported in [12], it is usual practice to
mploy the maximum possible number of decomposition levels.

.3. Hard and soft thresholding

In the hard thresholding technique, the wavelet coefficients
t(k)} of the noisy signal are subjected to the following trans-
ormation:

hard
f (k) =

{
0, if |t(k)| ≤ h

t(k), if |t(k)| > h
(1)

or k = 1, . . ., J, where h is a threshold value and subscript f
tands for “filtered”. The transformed coefficients {thard

f (k)} are
hen used to reconstruct the signal by inverse DWT.

Soft thresholding is more “aggressive” in that all coefficients
re modified, as shown in Eq. (2). In this case, the coefficients
hat are not replaced with zeros are shrunk towards zero by the
hreshold value h.

soft
f (k) =

{
0, if |t(k)| ≤ h

sign[t(k)][|t(k)| − h], if |t(k)| > h
(2)

The main difficulty associated to these methods consists of
etermining an appropriate threshold value. If h is too small, the
enoising will not be effective, but if h is too large, important
eatures of the signal may be distorted (“over-smoothing”). The
o-called universal threshold, which has been extensively used
n the literature [10,12,15], is defined by√

= σ 2 ln(J) (3)

here σ is the standard deviation of the noise, which is con-
idered to be white, and J is the length of the signal under
onsideration. If σ is unknown, an estimate can be obtained
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y [6,10,11,15]

ˆ median = median(|d1|)
0.6745

(4)

uch an approximation assumes that the highest frequency com-
onents, which are contained in the first-level detail coefficients
1, are mostly associated to noise.

It is worth noting that most implementations of hard and
oft thresholding leave the approximation coefficients unaltered
ecause such coefficients usually correspond to relevant features
f the signal [10]. This formulation will be adopted throughout
he present work.

.4. Proposed method

In the proposed method, each individual scan {xI(λ)} is
ssumed to be the sum of the deterministic term (“true signal”)
nd a zero-mean, uncorrelated noise term (subscript I stands for
ndividual). If an orthogonal DWT is employed, the noise in the
avelet coefficients is also zero-mean and uncorrelated [16].
herefore, the kth wavelet coefficient can be written as

I(k) = μ(k) + ηI(k) (5)

here μ(k) corresponds to the true signal and ηI(k) is a noise
erm such that

{ηI(k)} = 0 (6)

{ηI(k1)ηI(k2)} =
{

σ2
I (k), k1 = k2 = k

0, k1 �= k2
(7)

Consequently, the kth wavelet coefficient for the average of
scans is given by

(k) = μ(k) + η(k) (8)

ith

{η(k)} = 0 (9)

{η(k1)η(k2)} =
{

σ2(k), k1 = k2 = k

0, k1 �= k2
(10)

here σ2(k) = σ2
I (k)/M [1,16], that is, the noise variance is

nversely proportional to the number of coaveraged scans.
In the proposed strategy, each wavelet coefficient t(k) is mod-

fied by a transformation of the form

f(k) = f (k)t(k) (11)

nd the inverse DWT is then applied to the resulting sequence
tf(k)} in order to obtain the denoised signal. The sequence of
eights {f(k)} is calculated to minimize the cost function C
efined as

J∑
2
=

k=1

E{[tf(k) − μ(k)] } (12)

hich is the expected sum of square errors between the modified
oefficients and their ideal (“true”) values. By inserting Eqs. (8)

s
f
s
s

ica Acta 581 (2007) 159–167 161

nd (11) in Eq. (12), it follows that

=
J∑

k=1

E{[f (k)μ(k) + f (k)η(k) − μ(k)]2}

=
J∑

k=1

E{[μ(k)[f (k) − 1] + f (k)η(k)]2}

=
J∑

k=1

E{μ2(k)[f (k) − 1]2 + 2f (k)η(k)μ(k)[f (k) − 1]

+ f 2(k)η2(k)}

=
J∑

k=1

μ2(k)[f (k) − 1]2 + 2f (k)E{η(k)}μ(k)[f (k) − 1]

+ f 2(k)E{η2(k)} =
J∑

k=1

μ2(k)[f (k) − 1]2 + f 2(k)σ2(k)

(13)

here the last equality follows from Eqs. (9) and (10). The
erivative of C with respect to f(k) is given by

∂C

∂f (k)
= 2μ2(k)[f (k) − 1] + 2f (k)σ2(k) (14)

he minimum of the cost is achieved by imposing ∂C/∂f(k) = 0
or each k, which leads to

μ2(k)[f ∗(k) − 1] + f ∗(k)σ2(k) = 0

∴ f ∗(k)[μ2(k) + σ2(k)] = μ2(k)

∴ f ∗(k) = μ2(k)

μ2(k) + σ2(k)

(15)

here symbol * is used to denote the optimal value. Moreover,
t follows from Eq. (14) that the second derivatives of the cost
re given by

∂2C

∂f (k1)∂f (k2)
=
{

2μ2(k) + 2σ2(k), k1 = k2 = k

0, k1 �= k2
(16)

hich shows that the Hessian matrix is diagonal with positive
iagonal elements. Therefore, it can be concluded that the Hes-
ian matrix is positive-definite, which means that the sequence
f weights {f*(k)} does correspond to a minimum of the cost
rather than a maximum or an inflection point).

Eq. (15) shows that smaller weights are assigned to coeffi-
ients in which the signal-to-noise ratio is smaller. In fact, the
xpression for f*(k) can be re-written as

∗(k) =
(

1 + σ2(k)

μ2(k)

)−1

= (1 + SNR(k)−1)
−1

(17)

here SNR(k) is the signal-to-noise ratio (relation between the

ignal power and the noise power) in the kth coefficient. There-
ore, coefficients with a large SNR remain approximately the
ame (f*(k) ≈ 1), whereas coefficients with a small SNR are
hrunk towards zero (f*(k) ≈ 0).
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Since μ(k) and σ(k) are unknown, appropriate estimates must
e employed in their place. For this purpose, the sample mean
(k) calculated over M scans can be used as an estimate for μ(k).

f the noise is homoscedastic, an estimate for σ(k) is given by
ˆ median, as defined in Eq. (4). Therefore, Eq. (15) becomes

ˆ (k) = m2(k)

m2(k) + (σ̂median)2 (18)

ith

(k) = 1

M

M∑
i=1

ti(k) (19)

here ti(k) denotes the kth wavelet coefficient of the ith scan that
as actually acquired. The hat symbol (∧) is used in Eq. (18) to

ndicate that f̂ (k) is sub-optimal, since estimates for μ(k) and
(k) are used instead of their true values. By using f̂ (k) instead
f f(k) in Eq. (11), a sub-optimal expression for the denoised
oefficient t̂f(k) can be written as

f(k) = m2(k)

m2(k) + (σ̂median)2 t(k) (20)

The calculation expressed in Eq. (20) can be re-iterated by
mploying t̂f(k), instead of m(k), as a better estimate of μ(k). By
oing so, one arrives at the following recursion:

(n)
f (k) = [t̂(n−1)

f (k)]
2

[t̂(n−1)
f (k)]

2 + (σ̂median)2
t(k) (21)

here t̂
(n)
f (k) is the result of the nth iteration, with t̂

(0)
f (k) = m(k).

It is worth noting that t(k) in Eq. (21) is a random variable, as
efined in Eq. (8). However, in order to obtain t̂

(n)
f (k) from Eq.

21), t(k) must be replaced by the value actually obtained from
easured data. Such a value corresponds to the sample mean
(k) defined in Eq. (19). Therefore, Eq. (21) becomes

(n)
f (k) = [t̂(n−1)

f (k)]
2

[t̂(n−1)
f (k)]

2 + (σ̂median)2
m(k) (22)

The limit value t̂lim
f (k) for the recursion expressed in Eq.

22) can be determined by imposing the steady-state condition
(n)
f (k) = t̂

(n−1)
f (k) = t̂lim

f (k). As a result, the following equation
rises:

t̂lim
f (k)]

3 − [t̂lim
f (k)]

2
m(k) + t̂lim

f (k)(σ̂median)
2 = 0 (23)

hich has three possible real-valued solutions:

lim
f (k) =

⎧⎨
⎩0,

m(k) −
√

m2(k) − 4(σ̂median)2

2
,

m(k) +
√

m2(k) − 4(σ̂median)2
⎫⎬

(24)

2 ⎭

rovided that |m(k)| ≥ 2σ̂median. However, by using the initial
ondition t̂

(0)
f (k) = m(k), the recursion in Eq. (22) actually con-

p
v
a
i

ica Acta 581 (2007) 159–167

erges to the third solution if m(k) > 0 and to the second solution
f m(k) < 0, that is

lim
f (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m(k) +
√

m2(k) − 4(σ̂median)2

2
, m(k) > 0

m(k) −
√

m2(k) − 4(σ̂median)2

2
, m(k) < 0

(25)

s shown in Fig. 2a and b for m(k) > 0. A similar graphic analysis
an also be accomplished if m(k) < 0.

If |m(k)| < 2σ̂median, the only real-valued solution for Eq.
23) is t̂lim

f (k) = 0. Such a conclusion is illustrated in Fig. 2c.
Finally, the proposed denoising rule can be summarized as

ollows:

lim
f (k) =

⎧⎨
⎩

m(k) + sign[m(k)]
√

m2(k) − 4(σ̂median)2

2
, |m(k)| ≥ 2σ̂median

0, |m(k)| < 2σ̂median

(26)

where sign[m(k)] equals +1 if m(k) > 0 and −1 otherwise.
It is worth noting that using a single estimate σ̂median for the

tandard deviation of the noise in all wavelet coefficients may
ot be appropriate if the noise is heteroscedastic. In this case,
(k) could be estimated as

ˆ sample(k) =
√√√√ 1

M(M − 1)

M∑
i=1

[ti(k) − m(k)]2 (27)

or k = 1, . . ., J. In this equation, the additional factor M is
ncluded in the denominator to account for the coaveraging
ffect, as discussed at the beginning of this section. In order
o use this estimate, suffice it to replace σ̂median with σ̂sample(k)
n Eq. (26).

. Experimental

.1. Simulated example

In the simulated example, a synthetic signal {x(λ)}, λ = 1,
, . . ., 1024, was generated as the superposition of six Gaus-
ian functions with means equally distributed in the interval
1–1024). The peak heights and standard deviations of the Gaus-
ians were randomly generated in the range (2–4) and (0–30),
espectively. The resulting signal is presented in Fig. 3a. Each
imulated scan was generated by adding a zero-mean, white
aussian noise to the true signal. The standard deviation of the
oise was set to 0.1. A noisy scan simulated in this manner can
e seen in Fig. 3b.

A Symlet 8 wavelet filter bank was employed in the denoising
rocedure. In this case, filters H (low-pass) and G (high-pass)
ave 16 weights each. The filtering operations were accom-
lished by using circular convolution. The number of decom-

osition levels was set to six, which is the maximum possible
alue given the length of the input signal. In fact, the number of
pproximation coefficients at level 6 is 1024/(2∧6) = 16, which
s equal to the length of the H and G filters. Therefore, if an
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Fig. 2. (a) Graphical representation of the recursion expressed in Eq. (22) for m(k) = 3 and σ̂median = 1. The values of t̂
(n−1)
f (k) and t̂

(n)
f (k) are associated to the
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orizontal and vertical axes, respectively. The dashed straight line is the bisectrix
o the third and second solutions in Eq. (24), respectively. (b) Enlargement of th
hat start from t̂

(0)
f (k) = m(k) and converge to point A. (c) Graphical representa

dditional decomposition was carried out, the resulting approx-
mation coefficients would no longer retain position information,
hich is a key advantage of the DWT.
In addition to the results obtained with the simulation con-

itions described above, an investigation of the signal-to-noise
atio on the denoising outcome was also carried out. For this
urpose, three different values for the standard deviation of the
oise were employed (0.01, 0.1 and 1.0).

The denoising results were evaluated in terms of the root-
ean-square error (RMSE) between the reconstructed (xf) and

he true (x) signals, which is defined as

MSE =
√√√√ 1

J

J∑
λ=1

[xf(λ) − x(λ)]2 (28)

here J is the signal length.

.2. Experimental case study

Spectra of a single diesel sample were acquired by using a
omem FT-NIR spectrophotometer with a 2 cm−1 resolution in

he 850–1300 nm range at room temperature (24 ◦C) and rela-

ive air humidity of 48%. The resulting spectra had 2560 points.

ith these settings, the measurements have excellent wave-
ength repeatability, which ensures that the individual scans are
roperly aligned. Initially, 50 individual scans were acquired (a

i
c
p
b

first quadrant (t̂(n−1)
f (k) = t̂

(n)
f (k)). The intersection points A and B correspond

ph around point A. The arrows indicate the sequence of recursive calculations
r m(k) = 1.5 and σ̂median = 1.

ingle scan is depicted in Fig. 4a). Thereafter, a coaveraged spec-
rum (used as reference for RMSE calculations) was acquired
or the same sample by using 100 scans (Fig. 4b).

Denoising was initially carried out by using a Symlet 8
avelet filter bank with seven decomposition levels. Moreover,

n order to assess the sensitivity of the denoising methods with
espect to the choice of the wavelet filters, an investigation was
lso conducted with 21 wavelets from the Daubechies (db),
ymlet (sym) and Coiflet (coif) families, as in previous stud-

es [10,12].
All calculations in the simulated example and experimental

ase study were accomplished by using the Matlab 6.5 software
nd its Wavelet Toolbox.

. Results and discussion

.1. Simulated example

Fig. 5 presents the denoising results for the simulated data in
erms of RMSE values as a function of the number of coaver-
ged scans. In this case, the standard deviation of the noise in
ach individual scan was set to 0.1. As can be seen, all denois-

ng methods provided a reduction in RMSE with respect to the
oaveraged signal (“no denoising”). The performance of the pro-
osed method was similar to hard thresholding and considerably
etter than soft thresholding.
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Fig. 3. (a) True signal used in the simulated example. (b) Single scan corrupted
by noise with standard deviation of 0.1.

Fig. 4. (a) Individual NIR scan and (b) coaveraged spectrum used as reference
for RMSE calculations (100 scans).

Fig. 5. RMSE with respect to the true signal as a function of the number of
c
i
w

F
p
t
r
r
t

F
(
s
D
a

oaveraged scans in the simulated example. The standard deviation of the noise
n each scan was set to 0.1. A Symlet 8 filter bank with six decomposition levels
as employed.

The denoising outcome for eight scans can be visualized in
ig. 6a, in which the coaveraged signal (“no denoising”) is com-
ared with the reconstructed signals. The differences between
he proposed method and hard thresholding appear mainly in

egions of small signal intensity, where the former left some
esidual noise and the latter introduced oscillatory artifacts. Soft
hresholding, on the other hand, caused distortions in the signal,

ig. 6. (a) Comparison between the coaveraged signal resulting from eight scans
“no denoising”) and the denoised signals. (b) Comparison between the denoised
ignals (solid lines) and the true one (dotted lines) in the range λ = 240–360.
ifferent vertical offsets were added to the signals in (a and b) for better visu-

lization.
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Table 1
RMSE values (×1000) for eight scans and different noise levels (σ is the standard
deviation of the noise in an individual scan)

Denoising method σ

0.01 0.1 1.0

No denoising 3.5 34.6 346
Soft thresholding 4.0 32.8 219
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where J = 2560 is the number of points in each scan. Ratio �(M,
N) compares the results of coaveraging M scans and N scans
(xa,M and xa,N, respectively) by using the initial average of two
ard thresholding 1.7 15.5 124
roposed method 1.6 15.0 142

specially around the peaks, which were over-smoothed. Such
n effect is apparent in Fig. 6b, in which the denoised signals are
ompared with the true one. In this particular example, it can be
rgued that denoising by soft thresholding was too “agressive”.

The effect of noise intensity on the performance of the denois-
ng methods is presented in Table 1. As can be seen, the RMSE
as a general tendency to increase with the noise level, as
xpected. The proposed method is seen to be slightly better than
ard thresholding for small noise levels, whereas the situation is
nverted if there is too much noise. In all cases, soft thresholding
rovided the worst results (for σ = 0.01, it even increased the
MSE value when compared to the coaveraged signal without
enoising).

This example shows that choosing between hard and soft
hresholding may be critical in order to obtain good denoising.
he proposed method has the advantage of not requiring such a
ecision from the analyst.

.2. Experimental case study

An inspection of the individual scan in Fig. 4a indicates that
oise intensity is not uniform along the entire spectral range. In
act, noise is stronger in shorter wavelengths because of limita-

ions of the NIR detector. Therefore, the proposed method was
mplemented by using σ̂sample instead of σ̂median in Eq. (26).

According to the results in Fig. 7, soft thresholding was now
uperior to hard thresholding, in contrast with the findings of

ig. 7. RMSE with respect to the reference NIR spectrum as a function of the
umber of coaveraged scans. A Symlet 8 filter bank with seven decomposition
evels was employed.

F
(
v

ica Acta 581 (2007) 159–167 165

he simulated example. This difference between simulated and
xperimental results points once more to the difficulty of decid-
ng whether to use hard or soft thresholding. On the other hand,
he proposed method is again comparable to the best result
etween both thresholding methods.

In order to compare the denoising results in visual terms, a
riterion was devised to choose an appropriate number of scans
rior to the application of the denoising procedures. For this
urpose, let xa,n denote the signal resulting from coaveraging
scans. As n is increased, the coaveraged signal changes as a

esult of the reduction in noise level. When such changes become
nsignificant, the coaveraging process could be stopped to save
ime. In order to quantify the significance of such changes, let

(M, N) be defined as

(M, N) =
J∑

λ=1

[xa,M(λ) − xa,2(λ)]2

×
(

J∑
λ=1

[xa,N (λ) − xa,2(λ)]2

)−1

(29)
ig. 8. (a) Comparison of the denoised NIR spectra obtained after 16 scans.
b) Enlargement of the denoised spectra in the range 850–1000 nm. Different
ertical offsets were added to the spectra in (a and b) for better visualization.
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Table 2
RMSE values (×1000) for 16 scans and different wavelet filters

Wavelet filters Denoising method

Soft thresholding Hard thresholding Proposed method

db2 0.90 1.11 0.89
db3 0.88 1.10 0.89
db4 0.86 1.10 0.88
db5 0.85 1.10 0.86
db6 0.86 1.10 0.86
db7 0.85 1.10 0.87
db8 0.85 1.12 0.86
db9 0.85 1.11 0.86
db10 0.86 1.11 0.85
sym4 0.86 1.11 0.87
sym5 0.87 1.11 0.86
sym6 0.86 1.11 0.88
sym7 0.86 1.11 0.89
sym8 0.85 1.11 0.87
sym9 0.85 1.11 0.82
sym10 0.84 1.10 0.83
coif1 0.89 1.10 0.87
coif2 0.86 1.11 0.88
coif3 0.85 1.10 0.87
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[5] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, Prentice
oif4 0.84 1.10 0.86
oif5 0.84 1.10 0.82

cans (xa,2) as a basis for comparison. If N > M and �(M, N) is
ot significantly larger than one, the additional time required to
cquire N instead of M scans is not justified. In the present case,
y successively doubling the number of scans and then apply-
ng Eq. (29), it follows that �(4, 8) = 1.38, �(8, 16) = 1.22, and

(16, 32) = 1.06. By using an F-test with significance α = 0.05,
t can be concluded that α(16, 32) is not significantly larger than
ne. Therefore, 16 scans were adopted in the discussion below.

Fig. 8a presents the coaveraged spectrum before denoising,
s well as the spectra reconstructed by the three methods under
omparison. The main differences can be seen in the short-
avelength region, where the signal-to-noise ratio is relatively
oor. An enlargement of the spectra in the interval 850–1000 nm
s presented in Fig. 8b. As can be seen, the proposed method pro-
ided better noise suppression in the range 850–900 nm, whereas
oft thresholding was superior in the range 950–1000 nm.

Table 2 presents RMSE values resulting from the use
f 16 coaveraged scans and different wavelet filters. In this
able, the notations dbN, symN, and coifN refer to filters of
ength 2N, 2N, and 6N, respectively. According to an F-test
ith α = 0.05, the proposed method always outperformed hard

hresholding. In addition, it was equivalent to soft thresh-
lding in all cases with the exception of sym7 and sym9.
or sym9 the proposed method is significantly superior to
oft thresholding, whereas the opposite situation is observed
or sym7.

. Conclusions
The wavelet denoising method proposed in this paper was
hown to be a viable alternative to the standard techniques
f hard and soft thresholding. In the simulated example, the
ica Acta 581 (2007) 159–167

roposed method was approximately equivalent to hard thresh-
lding, by taking into account RMSE performance for different
NR scenarios. On the other hand, soft thresholding caused sig-
al distortion by over-smoothing of peaks. This example showed
hat choosing between hard and soft thresholding may be crit-
cal in order to obtain a good denoising result. By resorting to
he proposed method, the analyst is not required to make this
ecision.

In the second example, which employed real experimental
ata, soft thresholding was superior to hard thresholding, in con-
rast with the findings of the simulated example. Once more,
he proposed method was as good as the best choice between
oth thresholding methods. Such a conclusion was supported
y a comparison involving 21 different wavelet filters. It should
e emphasized that this experimental example concerned the
emoval of actual instrumental noise, in contrast to most case
tudies in the denoising literature, which usually involve simu-
ations with artificial noise.

It is worth noting that, despite the mathematical details under-
ying the proposed method, the final formulation consists of

simple equation (Eq. (26)), which can be implemented in a
traightforward manner.

An interesting possibility for further research would be the
pplication of the proposed method together with the stationary
avelet transform [17–20], originally called “á trous” algo-

ithm [9,21], which makes the wavelet decomposition space-
nvariant. The wavelet packet transform [22–24], which offers

ore flexibility in the signal decomposition process, could also
e employed.

In addition, future works may extend the scope of the inves-
igations presented in this paper by considering case studies
nvolving other instrumental techniques. The proposed method
hould be particularly useful in nuclear resonance or far-infrared
pectroscopy, where a considerable number of scans may be
equired to achieve an adequate signal-to-noise ratio. In such
ases, the use of denoising techniques would be of value to
educe the acquisition time needed to attain a given SNR or,
onversely, to increase SNR for a given number of scans.
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