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Abstract

This paper presents two methodologies for monitoring the service condition of diesel-engine lubricating oils on the basis of infrared spectra.
In the first approach, oils samples are discriminated into three groups, each one associated to a given wear stage. An algorithm is proposed to
select spectral variables with good discriminant power and small collinearity for the purpose of discriminant analysis classification. As a result, a
classification accuracy of 93% was obtained both in the middle (MIR) and near-infrared (NIR) ranges. The second approach employs multivariate
calibration methods to predict the viscosity of the lubricant. In this case, the use of absorbance measurements in the NIR spectral range was not
successful, because of experimental difficulties associated to the presence of particulate matter. Such a problem was circumvented by the use of
attenuated total reflectance (ATR) measurements in the MIR spectral range, in which an RMSEP of 3.8 ¢St and a relative average error of 3.2%

were attained.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Lubricants play a key role in extending the working life of
rotating machines. In order to maintain a proper lubrication, it is
important not only to use oils with suitable properties but also to
monitor their state of degradation in a periodic manner. In fact,
contaminations may compromise the lubricating capability of
an oil, which increases the wear of the machine components, as
well as the risk of mechanical collapse.

The tests currently employed to assess lubricant properties
are time-consuming and require specific equipments for the
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determination of each parameter of interest (for instance, kine-
matic viscosity and flash point) [1,2]. In this context, the use
of spectroscopy in conjunction with multivariate calibration
techniques has been proposed as a multi-parametric alterna-
tive to the present methods. In particular, middle (MIR) and
near (NIR) infrared spectroscopy offers several advantages for
this type of application, such as high sample throughput, non-
destructiveness and low cost [3]. Moreover, compact instruments
in the MIR and NIR ranges can be realized for field use.
Muchresearch has been conducted on the analysis of oil prod-
ucts by IR spectroscopy, for both classification and calibration
purposes [3—5]. As regards lubricants, Lima et al. [6] studied the
correlation between NIR spectra and the carcinogenic potential
of basic oils employing principal component regression (PCR).
Sastry et al. [7] used MIR spectroscopy and partial least squares
regression (PLS) to determine the chemical composition (paraf-
fins, isoparaffins, naftenes, aromatics and heteroaromatics) and
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its influence on the physico-chemical properties (viscosity and
viscosity index) in lubricants of mineral basis. MIR [8—11] and
NIR [12] spectroscopy have been employed for the prediction
of contaminants, degradation products and additives employing
PCR, PLS and interval-PLS. The potentiality of MIR spec-
troscopy for the prediction of viscosity in lubricating oils for
locomotives [10] and diesel engines [13] was assessed in a small-
size set of samples (20 and 40 samples, respectively) by PCR
and interval-PLS.

This paper proposes two strategies for monitoring the con-
dition of lubricating oils being used in diesel engines by means
of near and middle infrared spectroscopy. The first strategy is a
qualitative approach formulated in the context of pattern classi-
fication. In this case, the samples are categorized in three classes
according to their stage of use (short, medium, and long-term
use) and classification is performed by discriminant analysis. In
order to circumvent ill-conditioning problems, the dimension-
ality of the problem is reduced by using a variable selection
algorithm. This algorithm is aimed at maximizing the discrim-
inability of the spectral variables included in the model while
avoiding multicollinearity problems. For comparison, a conven-
tional KNN (K-nearest neighbours) classifier is also employed.

The second strategy is a quantitative approach that employs
IR spectroscopy and multivariate calibration techniques in order
to predict viscosity, which is the main control parameter for
lubricants in service. In this case, MLR (multiple linear regres-
sion), PCR, and PLS techniques are employed in the calibration.
The effect of different pre-processing procedures, as well as the
utility of variable selection, is assessed by means of a factorial
design study.

2. Background and theory

2.1. Qualitative analysis: Classification with respect to the
stage of use

The classification method adopted in this work is based on the
classic discriminant analysis technique, which assumes that the
objects follow a gaussian distribution within each class. Under
this assumption, the probability density function p;(x) for the
objects x=[x; x3 ... xalt belonging to the jth class is of the
form:
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where w; (d x 1) and X; (d x d) are the mean vector and the
covariance matrix, respectively, which can be estimated from a
set of training objects of known classification [14,15]. Variable
x; corresponds to the absorbance measured at the ith wavelength
monitored by the spectrometer. Henceforth, with a slight abuse
of language, the terms variable/wavelength and object/spectrum
will be used with the same meaning.

In a problem involving C classes with equal a priori prob-
abilities, the classification of a given object x is performed
by calculating p;j(x), j=1, 2, ..., C and by taking class j for

which p;(x) is maximum. Such a classification rule is known as
quadratic discriminant analysis (QDA) [15] because the deci-
sion boundaries defined by p;1(x) =pj2(x), j1 #j2, are quadratic
surfaces.

Simpler boundaries can be realized by adopting the regular-
ization hypothesis that the covariance matrices are equal, that is
Y| =X, =---= X = X. In this case, the decision surfaces
are hyperplanes and the resulting classification rule is known as
linear discriminant analysis (LDA) [15].

Both QDA and LDA usually benefit from a convenient selec-
tion of spectral variables [16]. In fact, if the number of variables
employed in the classification model is large as compared to
the number of training objects, the decision boundaries may be
subject to overfitting and the resulting classifier is likely to have
a poor generalization ability. Such a problem is aggravated in
the presence of significant collinearity between the classification
variables [17]. In the present work, a stepwise selection algo-
rithm that takes into account both the discriminant power of each
variable and the collinearity between variables is proposed.

2.2. Proposed variable selection algorithm for qualitative
analysis

The proposed algorithm evaluates the individual value of each
spectral variable according to its discriminability (as defined in
Appendix A) with respect to the classes under consideration.
At each step, the variable x; with the largest discriminability D;
is selected, a leave-one-out cross-validation procedure is per-
formed [14], and the number of errors is noted. Before the next
step, the variables that are highly correlated with those already
selected are discarded in order to avoid collinearity problems.
The algorithm stops when no more variables are available. The
set of variables that resulted in the smallest number of cross-
validation errors is then presented to the analyst. Such a selection
strategy can be summarized as follows.

Let A and B be the index sets for the variables already selected
and those still available, respectively. Moreover let L be a cor-
relation threshold (0 < L < 1) established by the analyst. In what
follows, N is a counter that indicates the number of variables
already selected.

Step 0 (initialization). A={}, B={1,...,d}, N=0.
Step 1.
Step 2.
Step 3.

Step 4. Perform a leave-one-out cross-validation procedure
using the variables with indexes in A. Let ECV(N) be the number
of resulting cross-validation errors.

Calculate D; for 1 <i<d.
i* = argmax D;, i € B.

Move i* from Bto A. Let N=N+ 1.

Step 5. Calculate the coefficient of multiple correlation r; of
each variable x; with index in B with respect to the variables
with indexes in A.

Step 6. Exclude from B the indexes of variables with coefficient
of multiple correlation larger than L.

Step 7. If B# {}, return to Step 2.
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Step 8. The optimum number 1" of variables is obtained from
the minimum of ECV(n), n=1, ..., N. The selected variables
correspond to the first 7~ indexes in A.

Remark 1. The coefficient of multiple correlation employed
in Step 5 is defined, for each variable x;, as:
o (%)

ri = @)

"7 o(x)

where o(.) denotes the standard deviation calculated in the train-
ing set and X; is an estimate of x; obtained by multiple linear
regression from the variables already selected. If 7; is close to
one, it can be concluded that the inclusion of x; does not bring
additional information into the classification model, because the
values of x; can be predicted from the variables already selected.

Remark 2. If there are several values of n associated to the
minimum number of cross-validation errors ECV(n), the small-
estn is chosen in Step 8. Such a choice is based on the Parsimony
Principle [14], which states that, given classification models with
similar prediction ability, the simplest one (smallest number of
variables) should be favoured.

Remark 3. The selection procedure is performed both for LDA
and QDA. If an LDA and a QDA model lead to the same number
of cross-validation errors, the model with the smallest number of
variables is favoured, as discussed above. If both models have the
same number of variables, LDA is favoured because it employs
simpler decision surfaces.

2.3. Quantitative analysis: multivariate regression for
viscosity prediction

The multivariate regression methods most frequently used
in infrared spectroscopy are multiple linear regression (MLR),
principal component regression (PCR) and partial least squares
(PLS). PCR uses principal components provided by principal
component analysis (PCA) to perform regression. PCA finds
directions of greatest variability by considering spectral infor-
mation, whereas PLS uses both spectral and target-property
information. PCR and PLS have the ability to overcome prob-
lems common to IR data, such as collinearity, band overlap
and interactions. MLR is the simplest quantitative multivariate
analysis method, yielding models which are simpler and easier
to interpret than PCR and PLS, since these calibration tech-
niques perform regression on latent variables, which may not
be amenable to a straightforward physical interpretation. On the
other hand, MLR is more sensitive to collinearity problems, and
usually requires a judicious choice of spectral variables.

Selecting from the full spectrum the wavelengths that result
in the maximum accuracy for regression models is still a chal-
lenging task. Several approaches have been proposed to select
optimal sets of variables for multivariate calibration, such as the
use of mutual information [18], simulated annealing [19,20],
genetic algorithms [21-23], artificial noise introduction in PLS
modelling [24], hybrid linear analysis [25], cyclic subspace
regression [26], iterative predictor weighting PLS [27], and dis-
criminant PLS [28]. Among these different variable selection

strategies, genetic algorithms (GAs) have become very pop-
ular owing to their simplicity and flexibility. GAs are guided
random search techniques inspired on natural selection mecha-
nisms, which explore the solution space in an efficient manner
and are suitable for parallel processing implementations.

A recently proposed wavelength selection strategy for MLR
calibration, the successive projections algorithm (SPA), was
specifically designed to remove collinearity from the data set
in order to improve numerical conditioning and reduce noise
propagation [29,30]. SPA has been successfully employed for
variable selection in UV-vis [29], ICP-OES [30] and NIR [31]
spectrometry. In all those applications, SPA led to MLR models
with better predictive ability than PLS or PCR models employ-
ing the full spectrum. Moreover, the results reported in Refs.
[30,31] provided evidence that SPA yields MLR models with
better prediction performance than a genetic algorithm.

SPA works on the basis of a calibration (cal) and a valida-
tion (val) sets, consisting of instrumental response data (X) and
parameter values measured by a reference method (y). The main
operations in SPA consist of algebraic manipulations carried out
on matrix Xy (Kc x J), whose rows and columns correspond
to Kc calibration samples and J spectral variables, respectively.
Starting from a column x( (which is associated to the initial vari-
able of the selection), SPA determines which of the remaining
columns has the largest projection on the subspace Sy orthogonal
to Xg. This column, denoted by x;, can be regarded as the one
that contains the largest amount of information not included in
Xo. At the next iteration, SPA restricts the analysis to subspace
So, taking x; as the new reference column, and proceeds with
the steps described above. Thus, the selection criterion in SPA
favours the minimization of collinearity between the variables.
Moreover, no more than Kc variables can be selected in this
manner. In fact, after each projection operation, the dimension
of the column space of Xy is reduced by one (that is, one degree
of freedom is removed). Thus, after Kc projection operations all
the column vectors of X¢, will have been projected onto the
origin of the space, that is, X, Will have become a null matrix.

The determination of the best initial variable (column of X,;)
and the optimum number N of variables is carried out as follows.
If N is fixed, J subsets of N variables can be selected, using each
of the J available variables as a starting point for SPA. For each of
those variable subsets, an MLR model is calibrated and the root-
mean-square error of prediction in the validation set (RMSEV)
is calculated as

Kv
1
— k _ ~k)2
RMSEV = Ky kg_l(yv %) 3

where y¥ and y’; are the reference and predicted values of the
parameter of interest in the kth validation sample and Kv is
the number of validation samples. The smallest RMSEV thus
obtained is denoted by RMSEV™(N), where the star is used to
indicate the best result for subsets of N variables. By repeat-
ing this procedure for N=1, 2, ..., Kc (note that N cannot
be larger than Kc, as explained above) the optimum N can
be obtained from the minimum of the RMSEV™(N) curve. To
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Table 1

Partitioning of the samples in training and test sets

Set Class Total
1 2 3

Training 20 39 26 85

Test 9 10 10 29

save computational time, the analyst may interrupt the proce-
dure before N reaches Kc if the reduction in RMSEV™(N) after
a corner point is minor or if the curve starts to increase after a
local minimum point.

3. Experimental

A set of 114 samples of lubricating oil (TURBO 15W40,
Petrobras) for diesel engines in different stages of use was
employed in this work. The samples were collected from an
urban transportation company that operates in the city of Recife,
Brazil.

Used lubricating oils for diesel engines display a very dark
colour and a substantial amount of particulated matter, which
prevents direct determinations in the NIR range. Attempts at
minimizing this problem by means of centrifugation and filtra-
tion were unsuccessful. Attempts at reducing the optical path
length were also unsuccessful. The samples were then diluted
with toluene at the proportion of 1:5 (v/v). In order to inspect
the spectra with minimum solvent influence, representative sam-
ples were also diluted in carbon tetrachloride. However, such an
option would not be practical for routine use, because of its
toxicity.

The NIR spectra were acquired in the 3996-14,000 cm™!
range (714-2500nm) with an ABB Bomem MB 160D spec-
trophotometer fitted with a Hellma transflectance probe. A spec-
tral resolution of 8 cm ™! and an optical path length of 2 mm were
employed. The reference spectra were obtained with toluene or
tetrachloride, according to the solvent used for dilution of the
sample.

In the middle infrared, the spectra were acquired in the
650-4000 cm ™! range (2500-14,000 nm) with an FT-IR Perkin
Elmer Spectrum GX spectrophotometer fitted with an ATR
probe. A spectral resolution of 8 cm™! was employed and air
was used as reference.

All acquisitions, both in the NIR and MIR range, were carried
out at room temperature (25 + 1 °C).

3.1. Qualitative analysis

For classification purposes, the oil samples were grouped
in three classes according to their stage of use: class 1 (short-
term use—Iless than 5000 km), class 2 (medium-term use—from
5000 to 20,000km) and class 3 (long-term use—more than
20,000 km). The samples were divided in training and test sets
as shown in Table 1.

Classification was performed both with original and deriva-
tive spectra. The derivative spectra were obtained after smooth-

ing by a Savitzky—Golay filter with a second-order polynomial
and a 5-point window. Moreover, a preliminary elimination of
variables with low signal-to-noise ratio was carried out by dis-
carding the variables for which the maximum signal intensity
over all derivative spectra did not exceed 10% of the maxi-
mum signal intensity in the entire data set. Furthermore, in
the NIR derivative spectra, the spectral range closer to visible
(10,130-14,000 cm_l) was discarded because of the high level
of noise caused by scattering.

3.2. Quantitative analysis

Determinations of kinematic viscosity at 40 °C were carried
out according to the ASTM D445 method [2]. Two out of the 114
oil samples were deemed outliers because of abnormal viscosity
values, which were ascribed to errors in the viscosity determi-
nation procedures.

The remaining 112 samples were divided into calibration,
validation, and prediction sets with 64, 25, and 23 samples,
respectively. The validation set was employed for the selection
of PLS/PCR factors by external validation, and for the selection
of wavelengths in SPA and GA. The prediction set was used for
the final assessment and comparison of the models. The adopted
figure of merit was the root-mean-square error in the prediction
set (RMSEP).

The GA employed standard binary chromosomes with length
equal to the number of wavelengths in the spectrum (a “1”
gene indicates a selected wavelength) [22]. The fitness of each
individual was taken as the inverse of the RMSEV (Eq. (3)) cal-
culated by using the wavelengths coded in the chromosome. The
probability of a given individual being selected for the mating
pool was proportional to its fitness (roulette method). One-
point crossover and mutation operators were employed with
probabilities of 60 and 10%, respectively. Population size was
kept constant, each generation being completely replaced by its
descendants. The GA was carried out for 150 generations with
80 chromosomes each. Moreover, the algorithm was repeated
20 times, starting from different random initial populations. The
best solution resulting from the 20 realizations of the GA was
adopted.

A 23 factorial design was employed to assess the influence
of pre-processing and variable selection procedures in the pre-
dictive ability of the resulting model. The factors under con-
sideration were spectrum differentiation, smoothing (5-point
Savitsky—Golay with second-order polynomial) and variable
selection. For PLS and PCR, the low and high design levels
for variable selection were no selection at all (i.e., use of full
spectrum) and GA selection, respectively. For MLR, the low
and high levels were SPA and GA selections, respectively.

4. Results and discussion

Fig. 1a presents spectra of toluene-diluted lubricating oils in
three different stages of use. It is worth noting that the absorption
of toluene, used as reference, is stronger than that of the oil,
and therefore negative peaks are observed in the spectra. For
comparison, Fig. 1b depicts the spectra of the same samples
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Fig. 1. Typical NIR spectra of (a) toluene-diluted and (b) carbon tetrachloride-
diluted lubricating oils in different stages of use. The markers indicate the three
wavelengths selected for qualitative analysis by QDA after pre-processing.

diluted with carbon tetrachloride, in which positive absorption
bands appear, since carbon tetrachloride does not absorb in this
region. As can be seen in both Fig. 1a and b, a positive baseline
shift is associated with an increasing wear of the lubricant. Such
a finding may be ascribed to the panchromatic absorption of
particulate matter [32]. A related effect, also described in Ref.
[32], consists of a decrease in the size of the absorption bands
in Fig. 1b.

The spectra of the same lubricating oils in the MIR range
are displayed in Fig. 2. By comparing Figs. 1 and 2, it can be
seen that in the MIR range the peaks are narrower and more
intense and that the baseline shift caused by particulate matter is
less noticeable than in the NIR spectra. The region between
3000 and 4000 nm comprises low-intensity bands associated
to the ring deformation of C-H in the aromatic ring super-
imposed to the high-intensity bands of ring deformations of
CH3—, CH;,— groups. The bands close to 6500 nm are distinctive
of aromatic groups present in the samples. Bands of symmet-
ric angular deformation of CHy— groups, including CH,—S
bonds, are found in the region near 7500 nm. The bands ascribed
to ring vibration of C—C bonds are weak and appear in the
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Fig. 2. Typical MIR spectra of lubricating oils in different stages of use. The

markers indicate the two wavelengths selected for qualitative analysis by QDA.

Table 2
Number of classification errors in the MIR data set

Original Pre-processed
DA 2 (QDA, 2 wavelengths) 12 (LDA, 4 wavelengths)
KNN 6(k=28) 14(k=1)

For DA, the discriminant type (QDA or LDA) and the number of wavelengths
are indicated, whereas for KNN, the number k of nearest neighbours is given.

region between 8300 and 12,500 nm. Finally, the region between
12,500 and 15,000 nm encompasses the absorption of several
functional groups, including polynuclear aromatics, other aro-
matic groups and alkenes.

4.1. Qualitative analysis

Table 2 presents the classification results for DA and KNN in
the MIR range. As can be seen, the best result was obtained with
QDA by employing two wavelengths without pre-processing. In
this case, only 2 out of 29 test objects were incorrectly classified,
leading to a classification accuracy of 93%. The errors consisted
of a class 2 and a class 3 objects included in classes 1 and 2,
respectively. It is worth noting that, if the pre-processing is car-
ried out, the number of errors increases both for DA and KNN.
It could be argued that, in the MIR range, baseline information,
which is removed by the derivative procedure, is important to
discriminate the classes.

Table 3 presents the classification results in the NIR range. In
this case, the best results for DA and KNN were obtained after
the pre-processing procedures, unlike in the MIR range. It could
be argued that baseline fluctuations in the NIR spectra cause
a large within-class variability compared to the between-class

Table 3
Classification results for the NIR data set

Original Pre-processed
DA 8 (LDA, 1 wavelength) 2 (QDA, 3 wavelengths)
KNN 7(k=13) 5(k=9)

For DA, the discriminant type (quadratic or linear) and the number of wave-
lengths are indicated, whereas for KNN, the number k of nearest neighbours is
given.
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variability, which should be removed to improve the separation
between the classes. The best result was obtained with QDA,
as in the MIR data set, by employing three wavelengths. Again,
only 2 out of 29 test objects were incorrectly classified (two class
3 objects included in class 2).

4.2. Quantitative analysis

The prediction results for kinematic viscosity at 40°C
employing NIR spectra and PLS, PCR, or MLR models were
not satisfactory. Nonlinear calibration attempts using neural net-
works [33-35] were also unsuccessful. It could be argued that
the radiation scattering and absorption by particulate matter, or
possibly the sample dilution in toluene, may have masked the
spectral features related to viscosity.

The prediction results obtained with MIR spectra and
PCR/PLS models are shown in Table 4. On the overall, the PLS
model predictions were more accurate when compared to PCR.
Therefore, the discussion will be henceforth restricted to the PLS
results.

A Pareto diagram for the effects calculated from Table 4 (PLS
calibration) is presented in Fig. 3a. It is worth noting that the
effects of interaction between factors are considerable. In order
to obtain a better interpretation of the effects, a cube represen-
tation for the factorial design is presented in Fig. 3b.

An inspection of Fig. 3b reveals that a change from the low
to the high level of the factors leads to an RMSEP increase in
most cases. An exception that should be pointed out is the use
of derivative and variable selection, in which case an RMSEP
reduction of 4.4 cSt is observed when smoothing is not per-
formed. The best result (smallest RMSEP) is obtained by using
low levels for the three factors (4.2 cSt). Such a finding is in
line with the conclusions of the classification study, in which
the best results for the MIR data were also obtained without
pre-processing.

Table 4
Factorial design matrix and PLS/PCR results for the MIR prediction of 40 °C
kinematic viscosity

Factors Levels
— +
Derivative No Yes
Smoothing No Yes
Variable selection by GA No Yes
Trial Factors RMSEP (cSt)
1 2 3 PLS PCR
1 - — — 4.2 (5) 4.7 (6)
2 + — - 5.6 (5) 6.7 (8)
3 - + — 4.3(5) 4.8 (6)
4 + + — 4.8 (6) 6.4 (9)
5 - — + 4.9 (7) 4.4(8)
6 + - + 894 10.3 (5)
7 - + + 5.6 (7) 5.7 (10)
8 + + + 4.5 (6) 4.6 (9)

The number of latent variables employed in each model is shown in parenthesis.
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Fig. 3. (a) Pareto effect diagram for PLS results in the 23 factorial design:
RMSEP values for the MIR prediction of 40 °C kinematic viscosity. (b) Cube
representation for the 23 factorial design involving derivative (D), smoothing
(S), and variable selection (VS) on the PLS results. The effects are expressed in
terms of RMSEP values for the MIR prediction of 40 °C kinematic viscosity.

For the best settings of the PLS calibration, the graph of
predicted versus observed values for the prediction samples is
presented in Fig. 4.

Table 5 presents the factorial design performed for MLR cal-
ibration. The only difference from the design in Table 4 consists
of the levels for the third factor. In this case, the selection of vari-
ables was carried out either by SPA (low level) or by GA (high
level). It is worth noting that MLR cannot be directly applied
to the full spectrum without variable selection because of ill-
conditioning problems.
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Fig. 4. PLS-MIR (without pre-processing) predictions of 40 °C kinematic vis-
cosity versus reference values. A straight line was drawn to indicate the bisectrice
of the quadrant.
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Table 5
Factorial design matrix and MLR results for the MIR prediction of 40 °C kine-
matic viscosity

Factors Levels
— +
Derivative No Yes
Smoothing No Yes
Variable selection SPA GA
Trial Factors RMSEP (cSt)
1 2 3

1 - - — 5.1 (24)

2 + - - 7.6 (7)

3 - + — 3.8 (28)

4 + + — 5.9 (18)

5 - - + 4.9 (25)

6 + - + 5.4 (25)

7 — + + 5.0 (25)

8 + + + 6.1 (24)

The number of wavelengths employed in each model is shown in parenthesis.

A Pareto diagram and a cube representation for the effects cal-
culated from Table 5 (MLR calibration) are presented in Fig. 5a
and b, respectively. As in the PLS case, the effects of interaction
between factors are substantial.

On average, the use of derivative increases the RMSEP by
1.6 cSt. Such an effect is more prominent when variable selection
is performed by SPA (2.3 ¢St average increase in RMSEP). It
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Selection -.27
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2] o7
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Fig. 5. (a) Pareto effect diagram for MLR results in the 2 factorial design:
RMSEP values for the MIR prediction of 40 °C kinematic viscosity. (b) Cube
representation for the 23 factorial design involving derivative (D), smoothing
(S), and variable selection (VS) on the MLR results. The effects are expressed
in terms of RMSEP values for the MIR prediction of 40 °C kinematic viscosity.
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Fig. 6. Wavelengths selected by SPA for the MIR prediction of 40 °C kinematic
viscosity.

might be argued that the SPA result is more compromised by the
use of derivative than the GA result because the SPA policy of
selecting variables which are weakly correlated may favour the
selection of noisy variables, a problem that is aggravated by the
derivative calculation. In fact, the effect of changing the variable
selection algorithm from SPA to GA decreases the RMSEP by
2.2 ¢St, when the derivative is used without smoothing, which
is the situation in which noise is maximally amplified by the
pre-processing procedures. In the opposite situation (smoothing
employed without the derivative), in which noise is maximally
attenuated, the variable selection effect is also the opposite, that
is, a 1.1 ¢St increase in the RMSEP is observed when SPA is
replaced with GA.

Fig. 6 indicates the wavelengths that led to the best MLR
result (RMSEP of 3.8 cSt), which was obtained without deriva-
tive, with smoothing, and with SPA variable selection. Such an
outcome is slightly better than the best PLS result (RMSEP of
4.2 cSt), but the difference is not significant according to an F-
test at 95% confidence level. Neural network models were also
employed in an attempt to achieve better predictions. However,
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Fig. 7. APS-MLR (with smoothing) predictions of 40 °C kinematic viscosity
vs. reference values. A straight line was drawn to indicate the bisectrice of the
quadrant.
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the results were similar to those yielded by the linear meth-
ods under study. For the best settings of the MLR calibration,
the graph of predicted versus observed values for the prediction
samples is presented in Fig. 7.

As the ASTM D445 norm does not present the reprodutibility
for the determination of 40 °C kinematic viscosity for oils in
service, the reference method repeatability was estimated in our
laboratory. A relative standard deviation of 3.3% was obtained,
which is comparable to the relative average errors obtained with
the best PLS (3.5%) and MLR (3.2%) models.

5. Conclusions

This work presented two proposals for monitoring the ser-
vice condition of diesel-engine lubricating oils by using infrared
spectroscopy. In the first approach, the oil spectra were classified
into three groups according to the stage of use. For this purpose,
a variable selection algorithm was proposed to allow the use of
simple discriminant analysis models. In this case, a classifica-
tion accuracy of 93% was obtained both in the MIR and NIR
ranges.

The second approach employed multivariate calibration
methods to predict viscosity, which is the main control parameter
for lubricants in service. In this case, the use of the NIR range
was not successful regardless of the modelling method. Such
a problem may be ascribed to the experimental methodology
employed for spectra acquisition, which required the dilution of
the samples because of the presence of particulated matter. This
difficulty was circumvented by use of attenuated total reflectance
(ATR) measurements in the MIR spectral range, in which an
RMSEP of 3.8 cSt and a relative average error of 3.2% were
attained. Those values can be considered satisfactory for moni-
toring the condition of lubricants in service.

The proposed methodologies may lead to substantial gains
for companies that operate a large number of diesel engines,
by allowing a more efficient condition-based replacement of the
lubricating oil.
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Appendix A. Discriminability

In classification problems, the variables can be ranked on the
basis of their ability to discriminate the classes under consider-
ation. According to Duda et al. [14], the discriminability D; of
variable x; can be quantified as:

_ SBi

D; =
Swi

(A1)

where Sw; and Sg; are measures of the within-class and between-
class dispersions for variable x;, respectively. The within-class

dispersion Sy; is defined as

c
Swi = Zsij (A.2)
j=1
where s;; is the dispersion of x; in class j, calculated as
2
sij = Z [xF — m;j] (A3)

kE[j

where xf»‘ denotes the value of x; in the kth object and my; is the
mean value of x; in class j, that is:

1 k
mij = E in (A4)
ke 1/'
The between-class dispersion Sp; is defined as
c
Spi = an[mij — m;]? (A.5)
j=1

where m; is the average of x; over all training objects.
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