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bstract

This paper presents two methodologies for monitoring the service condition of diesel-engine lubricating oils on the basis of infrared spectra.
n the first approach, oils samples are discriminated into three groups, each one associated to a given wear stage. An algorithm is proposed to
elect spectral variables with good discriminant power and small collinearity for the purpose of discriminant analysis classification. As a result, a
lassification accuracy of 93% was obtained both in the middle (MIR) and near-infrared (NIR) ranges. The second approach employs multivariate

alibration methods to predict the viscosity of the lubricant. In this case, the use of absorbance measurements in the NIR spectral range was not
uccessful, because of experimental difficulties associated to the presence of particulate matter. Such a problem was circumvented by the use of
ttenuated total reflectance (ATR) measurements in the MIR spectral range, in which an RMSEP of 3.8 cSt and a relative average error of 3.2%
ere attained.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Lubricants play a key role in extending the working life of
otating machines. In order to maintain a proper lubrication, it is
mportant not only to use oils with suitable properties but also to

onitor their state of degradation in a periodic manner. In fact,
ontaminations may compromise the lubricating capability of
n oil, which increases the wear of the machine components, as

ell as the risk of mechanical collapse.
The tests currently employed to assess lubricant properties

re time-consuming and require specific equipments for the
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etermination of each parameter of interest (for instance, kine-
atic viscosity and flash point) [1,2]. In this context, the use

f spectroscopy in conjunction with multivariate calibration
echniques has been proposed as a multi-parametric alterna-
ive to the present methods. In particular, middle (MIR) and
ear (NIR) infrared spectroscopy offers several advantages for
his type of application, such as high sample throughput, non-
estructiveness and low cost [3]. Moreover, compact instruments
n the MIR and NIR ranges can be realized for field use.

Much research has been conducted on the analysis of oil prod-
cts by IR spectroscopy, for both classification and calibration
urposes [3–5]. As regards lubricants, Lima et al. [6] studied the
orrelation between NIR spectra and the carcinogenic potential

f basic oils employing principal component regression (PCR).
astry et al. [7] used MIR spectroscopy and partial least squares
egression (PLS) to determine the chemical composition (paraf-
ns, isoparaffins, naftenes, aromatics and heteroaromatics) and
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ts influence on the physico-chemical properties (viscosity and
iscosity index) in lubricants of mineral basis. MIR [8–11] and
IR [12] spectroscopy have been employed for the prediction
f contaminants, degradation products and additives employing
CR, PLS and interval-PLS. The potentiality of MIR spec-

roscopy for the prediction of viscosity in lubricating oils for
ocomotives [10] and diesel engines [13] was assessed in a small-
ize set of samples (20 and 40 samples, respectively) by PCR
nd interval-PLS.

This paper proposes two strategies for monitoring the con-
ition of lubricating oils being used in diesel engines by means
f near and middle infrared spectroscopy. The first strategy is a
ualitative approach formulated in the context of pattern classi-
cation. In this case, the samples are categorized in three classes
ccording to their stage of use (short, medium, and long-term
se) and classification is performed by discriminant analysis. In
rder to circumvent ill-conditioning problems, the dimension-
lity of the problem is reduced by using a variable selection
lgorithm. This algorithm is aimed at maximizing the discrim-
nability of the spectral variables included in the model while
voiding multicollinearity problems. For comparison, a conven-
ional KNN (K-nearest neighbours) classifier is also employed.

The second strategy is a quantitative approach that employs
R spectroscopy and multivariate calibration techniques in order
o predict viscosity, which is the main control parameter for
ubricants in service. In this case, MLR (multiple linear regres-
ion), PCR, and PLS techniques are employed in the calibration.
he effect of different pre-processing procedures, as well as the
tility of variable selection, is assessed by means of a factorial
esign study.

. Background and theory

.1. Qualitative analysis: Classification with respect to the
tage of use

The classification method adopted in this work is based on the
lassic discriminant analysis technique, which assumes that the
bjects follow a gaussian distribution within each class. Under
his assumption, the probability density function pj(x) for the
bjects x = [x1 x2 . . . xd]T belonging to the jth class is of the
orm:

j(x) = 1√
(2π)d det(�j)

exp

[
−1

2
(x − �j)T�−1

j (x − �j)

]

(1)

here �j (d × 1) and �j (d × d) are the mean vector and the
ovariance matrix, respectively, which can be estimated from a
et of training objects of known classification [14,15]. Variable
i corresponds to the absorbance measured at the ith wavelength
onitored by the spectrometer. Henceforth, with a slight abuse

f language, the terms variable/wavelength and object/spectrum

ill be used with the same meaning.
In a problem involving C classes with equal a priori prob-

bilities, the classification of a given object x is performed
y calculating pj(x), j = 1, 2, . . ., C and by taking class j for

S
o

S
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hich pj(x) is maximum. Such a classification rule is known as
uadratic discriminant analysis (QDA) [15] because the deci-
ion boundaries defined by pj1(x) = pj2(x), j1 �= j2, are quadratic
urfaces.

Simpler boundaries can be realized by adopting the regular-
zation hypothesis that the covariance matrices are equal, that is

1 = �2 = · · · = �C = �. In this case, the decision surfaces
re hyperplanes and the resulting classification rule is known as
inear discriminant analysis (LDA) [15].

Both QDA and LDA usually benefit from a convenient selec-
ion of spectral variables [16]. In fact, if the number of variables
mployed in the classification model is large as compared to
he number of training objects, the decision boundaries may be
ubject to overfitting and the resulting classifier is likely to have
poor generalization ability. Such a problem is aggravated in

he presence of significant collinearity between the classification
ariables [17]. In the present work, a stepwise selection algo-
ithm that takes into account both the discriminant power of each
ariable and the collinearity between variables is proposed.

.2. Proposed variable selection algorithm for qualitative
nalysis

The proposed algorithm evaluates the individual value of each
pectral variable according to its discriminability (as defined in
ppendix A) with respect to the classes under consideration.
t each step, the variable xi with the largest discriminability Di

s selected, a leave-one-out cross-validation procedure is per-
ormed [14], and the number of errors is noted. Before the next
tep, the variables that are highly correlated with those already
elected are discarded in order to avoid collinearity problems.
he algorithm stops when no more variables are available. The
et of variables that resulted in the smallest number of cross-
alidation errors is then presented to the analyst. Such a selection
trategy can be summarized as follows.

Let A and B be the index sets for the variables already selected
nd those still available, respectively. Moreover let L be a cor-
elation threshold (0 < L < 1) established by the analyst. In what
ollows, N is a counter that indicates the number of variables
lready selected.

tep 0 (initialization). A = {}, B = {1, . . ., d}, N = 0.

tep 1. Calculate Di for 1 ≤ i ≤ d.

tep 2. i∗ = arg max Di, i ∈ B.

tep 3. Move i* from B to A. Let N = N + 1.

tep 4. Perform a leave-one-out cross-validation procedure
sing the variables with indexes in A. Let ECV(N) be the number
f resulting cross-validation errors.

tep 5. Calculate the coefficient of multiple correlation ri of
ach variable xi with index in B with respect to the variables
ith indexes in A.
tep 6. Exclude from B the indexes of variables with coefficient
f multiple correlation larger than L.

tep 7. If B �= {}, return to Step 2.
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tep 8. The optimum number n* of variables is obtained from
he minimum of ECV(n), n = 1, . . ., N. The selected variables
orrespond to the first n* indexes in A.

emark 1. The coefficient of multiple correlation employed
n Step 5 is defined, for each variable xi, as:

i = σ(x̂i)

σ(xi)
(2)

here σ(.) denotes the standard deviation calculated in the train-
ng set and x̂i is an estimate of xi obtained by multiple linear
egression from the variables already selected. If ri is close to
ne, it can be concluded that the inclusion of xi does not bring
dditional information into the classification model, because the
alues of xi can be predicted from the variables already selected.

emark 2. If there are several values of n associated to the
inimum number of cross-validation errors ECV(n), the small-

st n is chosen in Step 8. Such a choice is based on the Parsimony
rinciple [14], which states that, given classification models with
imilar prediction ability, the simplest one (smallest number of
ariables) should be favoured.

emark 3. The selection procedure is performed both for LDA
nd QDA. If an LDA and a QDA model lead to the same number
f cross-validation errors, the model with the smallest number of
ariables is favoured, as discussed above. If both models have the
ame number of variables, LDA is favoured because it employs
impler decision surfaces.

.3. Quantitative analysis: multivariate regression for
iscosity prediction

The multivariate regression methods most frequently used
n infrared spectroscopy are multiple linear regression (MLR),
rincipal component regression (PCR) and partial least squares
PLS). PCR uses principal components provided by principal
omponent analysis (PCA) to perform regression. PCA finds
irections of greatest variability by considering spectral infor-
ation, whereas PLS uses both spectral and target-property

nformation. PCR and PLS have the ability to overcome prob-
ems common to IR data, such as collinearity, band overlap
nd interactions. MLR is the simplest quantitative multivariate
nalysis method, yielding models which are simpler and easier
o interpret than PCR and PLS, since these calibration tech-
iques perform regression on latent variables, which may not
e amenable to a straightforward physical interpretation. On the
ther hand, MLR is more sensitive to collinearity problems, and
sually requires a judicious choice of spectral variables.

Selecting from the full spectrum the wavelengths that result
n the maximum accuracy for regression models is still a chal-
enging task. Several approaches have been proposed to select
ptimal sets of variables for multivariate calibration, such as the
se of mutual information [18], simulated annealing [19,20],

enetic algorithms [21–23], artificial noise introduction in PLS
odelling [24], hybrid linear analysis [25], cyclic subspace

egression [26], iterative predictor weighting PLS [27], and dis-
riminant PLS [28]. Among these different variable selection

i
i
b
b
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trategies, genetic algorithms (GAs) have become very pop-
lar owing to their simplicity and flexibility. GAs are guided
andom search techniques inspired on natural selection mecha-
isms, which explore the solution space in an efficient manner
nd are suitable for parallel processing implementations.

A recently proposed wavelength selection strategy for MLR
alibration, the successive projections algorithm (SPA), was
pecifically designed to remove collinearity from the data set
n order to improve numerical conditioning and reduce noise
ropagation [29,30]. SPA has been successfully employed for
ariable selection in UV–vis [29], ICP-OES [30] and NIR [31]
pectrometry. In all those applications, SPA led to MLR models
ith better predictive ability than PLS or PCR models employ-

ng the full spectrum. Moreover, the results reported in Refs.
30,31] provided evidence that SPA yields MLR models with
etter prediction performance than a genetic algorithm.

SPA works on the basis of a calibration (cal) and a valida-
ion (val) sets, consisting of instrumental response data (X) and
arameter values measured by a reference method (y). The main
perations in SPA consist of algebraic manipulations carried out
n matrix Xcal (Kc × J), whose rows and columns correspond
o Kc calibration samples and J spectral variables, respectively.
tarting from a column x0 (which is associated to the initial vari-
ble of the selection), SPA determines which of the remaining
olumns has the largest projection on the subspace S0 orthogonal
o x0. This column, denoted by x1, can be regarded as the one
hat contains the largest amount of information not included in
0. At the next iteration, SPA restricts the analysis to subspace
0, taking x1 as the new reference column, and proceeds with
he steps described above. Thus, the selection criterion in SPA
avours the minimization of collinearity between the variables.

oreover, no more than Kc variables can be selected in this
anner. In fact, after each projection operation, the dimension

f the column space of Xcal is reduced by one (that is, one degree
f freedom is removed). Thus, after Kc projection operations all
he column vectors of Xcal will have been projected onto the
rigin of the space, that is, Xcal will have become a null matrix.

The determination of the best initial variable (column of Xcal)
nd the optimum number N of variables is carried out as follows.
f N is fixed, J subsets of N variables can be selected, using each
f the J available variables as a starting point for SPA. For each of
hose variable subsets, an MLR model is calibrated and the root-

ean-square error of prediction in the validation set (RMSEV)
s calculated as

MSEV =
√√√√ 1

Kv

Kv∑
k=1

(yk
v − ŷk

v)2 (3)

here yk
v and ŷk

v are the reference and predicted values of the
arameter of interest in the kth validation sample and Kv is
he number of validation samples. The smallest RMSEV thus
btained is denoted by RMSEV*(N), where the star is used to

ndicate the best result for subsets of N variables. By repeat-
ng this procedure for N = 1, 2, . . ., Kc (note that N cannot
e larger than Kc, as explained above) the optimum N can
e obtained from the minimum of the RMSEV*(N) curve. To
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Table 1
Partitioning of the samples in training and test sets

Set Class Total

1 2 3
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raining 20 39 26 85
est 9 10 10 29

ave computational time, the analyst may interrupt the proce-
ure before N reaches Kc if the reduction in RMSEV*(N) after
corner point is minor or if the curve starts to increase after a

ocal minimum point.

. Experimental

A set of 114 samples of lubricating oil (TURBO 15W40,
etrobras) for diesel engines in different stages of use was
mployed in this work. The samples were collected from an
rban transportation company that operates in the city of Recife,
razil.

Used lubricating oils for diesel engines display a very dark
olour and a substantial amount of particulated matter, which
revents direct determinations in the NIR range. Attempts at
inimizing this problem by means of centrifugation and filtra-

ion were unsuccessful. Attempts at reducing the optical path
ength were also unsuccessful. The samples were then diluted
ith toluene at the proportion of 1:5 (v/v). In order to inspect

he spectra with minimum solvent influence, representative sam-
les were also diluted in carbon tetrachloride. However, such an
ption would not be practical for routine use, because of its
oxicity.

The NIR spectra were acquired in the 3996–14,000 cm−1

ange (714–2500 nm) with an ABB Bomem MB 160D spec-
rophotometer fitted with a Hellma transflectance probe. A spec-
ral resolution of 8 cm−1 and an optical path length of 2 mm were
mployed. The reference spectra were obtained with toluene or
etrachloride, according to the solvent used for dilution of the
ample.

In the middle infrared, the spectra were acquired in the
50–4000 cm−1 range (2500–14,000 nm) with an FT-IR Perkin
lmer Spectrum GX spectrophotometer fitted with an ATR
robe. A spectral resolution of 8 cm−1 was employed and air
as used as reference.
All acquisitions, both in the NIR and MIR range, were carried

ut at room temperature (25 ± 1 ◦C).

.1. Qualitative analysis

For classification purposes, the oil samples were grouped
n three classes according to their stage of use: class 1 (short-
erm use—less than 5000 km), class 2 (medium-term use—from
000 to 20,000 km) and class 3 (long-term use—more than

0,000 km). The samples were divided in training and test sets
s shown in Table 1.

Classification was performed both with original and deriva-
ive spectra. The derivative spectra were obtained after smooth-

t
o
a
c
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ng by a Savitzky–Golay filter with a second-order polynomial
nd a 5-point window. Moreover, a preliminary elimination of
ariables with low signal-to-noise ratio was carried out by dis-
arding the variables for which the maximum signal intensity
ver all derivative spectra did not exceed 10% of the maxi-
um signal intensity in the entire data set. Furthermore, in

he NIR derivative spectra, the spectral range closer to visible
10,130–14,000 cm−1) was discarded because of the high level
f noise caused by scattering.

.2. Quantitative analysis

Determinations of kinematic viscosity at 40 ◦C were carried
ut according to the ASTM D445 method [2]. Two out of the 114
il samples were deemed outliers because of abnormal viscosity
alues, which were ascribed to errors in the viscosity determi-
ation procedures.

The remaining 112 samples were divided into calibration,
alidation, and prediction sets with 64, 25, and 23 samples,
espectively. The validation set was employed for the selection
f PLS/PCR factors by external validation, and for the selection
f wavelengths in SPA and GA. The prediction set was used for
he final assessment and comparison of the models. The adopted
gure of merit was the root-mean-square error in the prediction
et (RMSEP).

The GA employed standard binary chromosomes with length
qual to the number of wavelengths in the spectrum (a “1”
ene indicates a selected wavelength) [22]. The fitness of each
ndividual was taken as the inverse of the RMSEV (Eq. (3)) cal-
ulated by using the wavelengths coded in the chromosome. The
robability of a given individual being selected for the mating
ool was proportional to its fitness (roulette method). One-
oint crossover and mutation operators were employed with
robabilities of 60 and 10%, respectively. Population size was
ept constant, each generation being completely replaced by its
escendants. The GA was carried out for 150 generations with
0 chromosomes each. Moreover, the algorithm was repeated
0 times, starting from different random initial populations. The
est solution resulting from the 20 realizations of the GA was
dopted.

A 23 factorial design was employed to assess the influence
f pre-processing and variable selection procedures in the pre-
ictive ability of the resulting model. The factors under con-
ideration were spectrum differentiation, smoothing (5-point
avitsky–Golay with second-order polynomial) and variable
election. For PLS and PCR, the low and high design levels
or variable selection were no selection at all (i.e., use of full
pectrum) and GA selection, respectively. For MLR, the low
nd high levels were SPA and GA selections, respectively.

. Results and discussion

Fig. 1a presents spectra of toluene-diluted lubricating oils in

hree different stages of use. It is worth noting that the absorption
f toluene, used as reference, is stronger than that of the oil,
nd therefore negative peaks are observed in the spectra. For
omparison, Fig. 1b depicts the spectra of the same samples
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Fig. 2. Typical MIR spectra of lubricating oils in different stages of use. The
markers indicate the two wavelengths selected for qualitative analysis by QDA.

Table 2
Number of classification errors in the MIR data set

Original Pre-processed

DA 2 (QDA, 2 wavelengths) 12 (LDA, 4 wavelengths)
K
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this case, the best results for DA and KNN were obtained after
the pre-processing procedures, unlike in the MIR range. It could
be argued that baseline fluctuations in the NIR spectra cause
a large within-class variability compared to the between-class

Table 3
Classification results for the NIR data set

Original Pre-processed

DA 8 (LDA, 1 wavelength) 2 (QDA, 3 wavelengths)
ig. 1. Typical NIR spectra of (a) toluene-diluted and (b) carbon tetrachloride-
iluted lubricating oils in different stages of use. The markers indicate the three
avelengths selected for qualitative analysis by QDA after pre-processing.

iluted with carbon tetrachloride, in which positive absorption
ands appear, since carbon tetrachloride does not absorb in this
egion. As can be seen in both Fig. 1a and b, a positive baseline
hift is associated with an increasing wear of the lubricant. Such
finding may be ascribed to the panchromatic absorption of

articulate matter [32]. A related effect, also described in Ref.
32], consists of a decrease in the size of the absorption bands
n Fig. 1b.

The spectra of the same lubricating oils in the MIR range
re displayed in Fig. 2. By comparing Figs. 1 and 2, it can be
een that in the MIR range the peaks are narrower and more
ntense and that the baseline shift caused by particulate matter is
ess noticeable than in the NIR spectra. The region between
000 and 4000 nm comprises low-intensity bands associated
o the ring deformation of C–H in the aromatic ring super-
mposed to the high-intensity bands of ring deformations of
H3−, CH2−groups. The bands close to 6500 nm are distinctive

f aromatic groups present in the samples. Bands of symmet-
ic angular deformation of CH2− groups, including CH2 S
onds, are found in the region near 7500 nm. The bands ascribed
o ring vibration of C C bonds are weak and appear in the

K

F
l
g

NN 6 (k = 28) 14 (k = 1)

or DA, the discriminant type (QDA or LDA) and the number of wavelengths
re indicated, whereas for KNN, the number k of nearest neighbours is given.

egion between 8300 and 12,500 nm. Finally, the region between
2,500 and 15,000 nm encompasses the absorption of several
unctional groups, including polynuclear aromatics, other aro-
atic groups and alkenes.

.1. Qualitative analysis

Table 2 presents the classification results for DA and KNN in
he MIR range. As can be seen, the best result was obtained with
DA by employing two wavelengths without pre-processing. In

his case, only 2 out of 29 test objects were incorrectly classified,
eading to a classification accuracy of 93%. The errors consisted
f a class 2 and a class 3 objects included in classes 1 and 2,
espectively. It is worth noting that, if the pre-processing is car-
ied out, the number of errors increases both for DA and KNN.
t could be argued that, in the MIR range, baseline information,
hich is removed by the derivative procedure, is important to
iscriminate the classes.

Table 3 presents the classification results in the NIR range. In
NN 7 (k = 13) 5 (k = 9)

or DA, the discriminant type (quadratic or linear) and the number of wave-
engths are indicated, whereas for KNN, the number k of nearest neighbours is
iven.
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Fig. 3. (a) Pareto effect diagram for PLS results in the 23 factorial design:
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ariability, which should be removed to improve the separation
etween the classes. The best result was obtained with QDA,
s in the MIR data set, by employing three wavelengths. Again,
nly 2 out of 29 test objects were incorrectly classified (two class
objects included in class 2).

.2. Quantitative analysis

The prediction results for kinematic viscosity at 40 ◦C
mploying NIR spectra and PLS, PCR, or MLR models were
ot satisfactory. Nonlinear calibration attempts using neural net-
orks [33–35] were also unsuccessful. It could be argued that

he radiation scattering and absorption by particulate matter, or
ossibly the sample dilution in toluene, may have masked the
pectral features related to viscosity.

The prediction results obtained with MIR spectra and
CR/PLS models are shown in Table 4. On the overall, the PLS
odel predictions were more accurate when compared to PCR.
herefore, the discussion will be henceforth restricted to the PLS

esults.
A Pareto diagram for the effects calculated from Table 4 (PLS

alibration) is presented in Fig. 3a. It is worth noting that the
ffects of interaction between factors are considerable. In order
o obtain a better interpretation of the effects, a cube represen-
ation for the factorial design is presented in Fig. 3b.

An inspection of Fig. 3b reveals that a change from the low
o the high level of the factors leads to an RMSEP increase in

ost cases. An exception that should be pointed out is the use
f derivative and variable selection, in which case an RMSEP
eduction of 4.4 cSt is observed when smoothing is not per-
ormed. The best result (smallest RMSEP) is obtained by using
ow levels for the three factors (4.2 cSt). Such a finding is in

ine with the conclusions of the classification study, in which
he best results for the MIR data were also obtained without
re-processing.

able 4
actorial design matrix and PLS/PCR results for the MIR prediction of 40 ◦C
inematic viscosity

actors Levels

− +

erivative No Yes
moothing No Yes
ariable selection by GA No Yes

rial Factors RMSEP (cSt)

1 2 3 PLS PCR

1 − − − 4.2 (5) 4.7 (6)
2 + − − 5.6 (5) 6.7 (8)
3 − + − 4.3 (5) 4.8 (6)
4 + + − 4.8 (6) 6.4 (9)
5 − − + 4.9 (7) 4.4 (8)
6 + − + 8.9 (4) 10.3 (5)
7 − + + 5.6 (7) 5.7 (10)
8 + + + 4.5 (6) 4.6 (9)

he number of latent variables employed in each model is shown in parenthesis.

i
o
a
l
t
c

F
c
o

MSEP values for the MIR prediction of 40 ◦C kinematic viscosity. (b) Cube
epresentation for the 23 factorial design involving derivative (D), smoothing
S), and variable selection (VS) on the PLS results. The effects are expressed in
erms of RMSEP values for the MIR prediction of 40 ◦C kinematic viscosity.

For the best settings of the PLS calibration, the graph of
redicted versus observed values for the prediction samples is
resented in Fig. 4.

Table 5 presents the factorial design performed for MLR cal-
bration. The only difference from the design in Table 4 consists
f the levels for the third factor. In this case, the selection of vari-

bles was carried out either by SPA (low level) or by GA (high
evel). It is worth noting that MLR cannot be directly applied
o the full spectrum without variable selection because of ill-
onditioning problems.

ig. 4. PLS-MIR (without pre-processing) predictions of 40 ◦C kinematic vis-
osity versus reference values. A straight line was drawn to indicate the bisectrice
f the quadrant.



350 A.R. Caneca et al. / Talanta 70 (2006) 344–352

Table 5
Factorial design matrix and MLR results for the MIR prediction of 40 ◦C kine-
matic viscosity

Factors Levels

− +

Derivative No Yes
Smoothing No Yes
Variable selection SPA GA

Trial Factors RMSEP (cSt)

1 2 3

1 − − − 5.1 (24)
2 + − − 7.6 (7)
3 − + − 3.8 (28)
4 + + − 5.9 (18)
5 − − + 4.9 (25)
6 + − + 5.4 (25)

T

c
a
b

1
i

F
R
r
(
i

F
v

m
u
s
s
d

7 − + + 5.0 (25)
8 + + + 6.1 (24)

he number of wavelengths employed in each model is shown in parenthesis.

A Pareto diagram and a cube representation for the effects cal-
ulated from Table 5 (MLR calibration) are presented in Fig. 5a
nd b, respectively. As in the PLS case, the effects of interaction

etween factors are substantial.

On average, the use of derivative increases the RMSEP by
.6 cSt. Such an effect is more prominent when variable selection
s performed by SPA (2.3 cSt average increase in RMSEP). It

ig. 5. (a) Pareto effect diagram for MLR results in the 23 factorial design:
MSEP values for the MIR prediction of 40 ◦C kinematic viscosity. (b) Cube

epresentation for the 23 factorial design involving derivative (D), smoothing
S), and variable selection (VS) on the MLR results. The effects are expressed
n terms of RMSEP values for the MIR prediction of 40 ◦C kinematic viscosity.

s
2
i
p
e
a
i
r

r
t
o
4
t
e

F
v
q

ig. 6. Wavelengths selected by SPA for the MIR prediction of 40 ◦C kinematic
iscosity.

ight be argued that the SPA result is more compromised by the
se of derivative than the GA result because the SPA policy of
electing variables which are weakly correlated may favour the
election of noisy variables, a problem that is aggravated by the
erivative calculation. In fact, the effect of changing the variable
election algorithm from SPA to GA decreases the RMSEP by
.2 cSt, when the derivative is used without smoothing, which
s the situation in which noise is maximally amplified by the
re-processing procedures. In the opposite situation (smoothing
mployed without the derivative), in which noise is maximally
ttenuated, the variable selection effect is also the opposite, that
s, a 1.1 cSt increase in the RMSEP is observed when SPA is
eplaced with GA.

Fig. 6 indicates the wavelengths that led to the best MLR
esult (RMSEP of 3.8 cSt), which was obtained without deriva-
ive, with smoothing, and with SPA variable selection. Such an
utcome is slightly better than the best PLS result (RMSEP of

.2 cSt), but the difference is not significant according to an F-
est at 95% confidence level. Neural network models were also
mployed in an attempt to achieve better predictions. However,

ig. 7. APS-MLR (with smoothing) predictions of 40 ◦C kinematic viscosity
s. reference values. A straight line was drawn to indicate the bisectrice of the
uadrant.
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he results were similar to those yielded by the linear meth-
ds under study. For the best settings of the MLR calibration,
he graph of predicted versus observed values for the prediction
amples is presented in Fig. 7.

As the ASTM D445 norm does not present the reprodutibility
or the determination of 40 ◦C kinematic viscosity for oils in
ervice, the reference method repeatability was estimated in our
aboratory. A relative standard deviation of 3.3% was obtained,
hich is comparable to the relative average errors obtained with

he best PLS (3.5%) and MLR (3.2%) models.

. Conclusions

This work presented two proposals for monitoring the ser-
ice condition of diesel-engine lubricating oils by using infrared
pectroscopy. In the first approach, the oil spectra were classified
nto three groups according to the stage of use. For this purpose,
variable selection algorithm was proposed to allow the use of

imple discriminant analysis models. In this case, a classifica-
ion accuracy of 93% was obtained both in the MIR and NIR
anges.

The second approach employed multivariate calibration
ethods to predict viscosity, which is the main control parameter

or lubricants in service. In this case, the use of the NIR range
as not successful regardless of the modelling method. Such
problem may be ascribed to the experimental methodology

mployed for spectra acquisition, which required the dilution of
he samples because of the presence of particulated matter. This
ifficulty was circumvented by use of attenuated total reflectance
ATR) measurements in the MIR spectral range, in which an
MSEP of 3.8 cSt and a relative average error of 3.2% were
ttained. Those values can be considered satisfactory for moni-
oring the condition of lubricants in service.

The proposed methodologies may lead to substantial gains
or companies that operate a large number of diesel engines,
y allowing a more efficient condition-based replacement of the
ubricating oil.
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ppendix A. Discriminability

In classification problems, the variables can be ranked on the
asis of their ability to discriminate the classes under consider-
tion. According to Duda et al. [14], the discriminability Di of
ariable xi can be quantified as:
i = SBi

SWi

(A.1)

here SWi and SBi are measures of the within-class and between-
lass dispersions for variable xi, respectively. The within-class

[
[

[
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ispersion SWi is defined as

Wi =
C∑

j=1

sij (A.2)

here sij is the dispersion of xi in class j, calculated as

ij =
∑
k ∈ Ij

[xk
i − mij]

2
(A.3)

here xk
i denotes the value of xi in the kth object and mij is the

ean value of xi in class j, that is:

ij = 1

nj

∑
k ∈ Ij

xk
i (A.4)

he between-class dispersion SBi is defined as

Bi =
C∑

j=1

nj[mij − mi]
2 (A.5)

here mi is the average of xi over all training objects.
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[6] F.S.G. Lima, M.A.S. Araújo, L.E.P. Borges, Tribol. Int. 36 (2003) 691.
[7] M.I.S. Sastry, A. Chopra, A.S. Sarpal, S.K. Jain, S.P. Srivastava, A.K. Bhat-

nagar, Energy Fuels 12 (1998) 304.
[8] F.R. Van De Voort, J. Sedman, V. Yaylayan, Appl. Spectrosc. 58 (2003)

193.
[9] J. Dong, F.R. Van De Voort, V. Yaylayan, A.A. Ismail, D. Pinchuk, A.

Brazeau, Lubr. Eng. 45 (2000) 30.
10] A.D. Stuart, S.M. Trotman, K.J. Doolan, P.M. Fredericks, Appl. Spectrosc.

43 (1989) 55.
11] A. Borin, R.J. Poppi, Vibr. Spectrosc. 37 (2005) 27.
12] J. Paschoal, F.D. Barboza, R.J. Poppi, J. Near Infrared Spectrosc. 11 (2003)

211.
13] A. Borin, Aplicação de quimiometria e espectroscopia no infravermelho no

controle de qualidade de lubrificantes, Universidade Estadual de Campinas,
Campinas, SP, 2003.

14] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., John
Wiley, New York, 2001.

15] W. Wu, Y. Mallet, B. Walczak, W. Penninckx, D.L. Massart, S. Heuerding,
F. Erni, Chem. Intell. Lab. Syst. 329 (1996) 257.

16] M. Kudo, J. Sklansky, Pattern Recogn. 33 (2000) 25.
17] T. Naes, B.H. Mevik, J. Chem. 15 (2001) 413.
18] N. Benoudjit, D. François, M. Meurens, M. Verleysen, Chem. Intell. Lab.

Syst. 74 (2004) 243.
19] U. Horchner, J.H. Kalivas, Anal. Chim. Acta 311 (1995) 1.
20] J.H. Kalivas, N. Roberts, J.M. Sutter, Anal. Chem. 61 (1989) 2024.
21] C.B. Lucasius, M.L.M. Beckers, G. Kateman, Anal. Chim. Acta 286 (1994)

135.

22] R. Leardi, J. Chem. 15 (2000) 559.
23] D.L. Massart, D. Jouan-Rimbaud, R. Leardi, O.E. De Noord, Anal. Chem.

67 (1995) 4295.
24] V. Centner, D.L. Massart, O.E. deNoord, S. Jong, B.M. Vandeginste, C.

Sterna, Anal. Chem. 68 (1996) 3851.



3 alanta

[
[

[
[
[

[

[

[
[

52 A.R. Caneca et al. / T

25] H.C. Goicoechea, A.C. Olivieri, Analyst 124 (1989) 725.
26] G.A. Bakken, T.P. Houghton, J.H. Kalivas, Chem. Intell. Lab. Syst. 45

(1999) 225.
27] M. Forina, C. Casolino, C.P. Millan, J. Chem. 13 (1999) 165.

28] B.K. Alsberg, D.B. Kell, R. Goodacre, Anal. Chem. 70 (1998) 4126.
29] M.C.U. Araujo, T.C.B. Saldanha, R.K.H. Galvão, T. Yoneyama, H.C.

Chame, V. Visani, Chem. Intell. Lab. Syst. 57 (2001) 65.
30] R.K.H. Galvão, M.F. Pimentel, M.C. Araújo, U. Yoneyama, T.V. Visani,
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