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Abstract

The simultaneous determination of ammonia and relative humidity (RH) in air employing an optical ®bre chemical sensor based on a

na®on-crystal violet composite and a multivariate calibration based on and arti®cial neural network (ANN) has been described. Each and

every measurement was made with a new ®lm of 5 mm thickness, prepared from a 1:0� 10ÿ3 mol lÿ1 crystal violet and 1:0� 10ÿ2 mol lÿ1

na®on (as sulphonate groups) solution. Studies were performed in the ranges of 30±70% relative humidity and 0±25 ppm ammonia. A feed-

forward ANN, with error back propagation training algorithm, was employed for treatment of data. Input neurons corresponding to

re¯ectance intensities measured at 562, 583, 605, 626 and 660 nm were employed. The optimised ANN provided standard errors of

prediction (SEP) of 28.4 and 7.3% for NH3 and RH, respectively, when fed with spectral data recorded after 2 min of exposure (5 input

neurons). The generalisation capability of the ANN was improved when it was fed with spectra data recorded after time intervals of 30, 60,

90 and 120 s (20 input neurons), providing SEPs equal to 9.9 and 4.5% for NH3 and RH, respectively. This improvement can be explained

considering that water vapour reacts faster than NH3 with the ®lm (a time interval <30 s is enough for the reaction to reach the equilibrium

state) while the reaction rate for NH3 is dependent on the RH (higher RH inhibits ammonia reaction). # 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

In the last decade, due to the development of signal

processing using powerful microcomputers, the drawbacks

concerning the selectivity of the analytical methods have

been overcome by employing multivariate calibration che-

mometric methods, such as principal component regression

(PCR), multiple linear regression (MLR), partial least square

(PLS), which are among the most utilised linear mathema-

tical models, and arti®cial neural networks (ANN), that are

frequently employed to model non-linear data [1,2].

The ANNs can be classi®ed, in a ®rst approximation, as

non-linear and non-parametric regression methods [2], pro-

viding to ANNs good ¯exibility, since, a priori, they do not

need a rigid mathematical model and the calibration para-

meters can be determined using data, through a training (or

learning) step. After training, the neural network is able to

generalise its knowledge and making predictions for an

unknown example [2,3].

Neural networks can be idealised based on different

architectures and trained by employing different algorithms.

The multi-layer perceptron (MLP), also called multi-layer

feed-forward, trained by the error back propagation algo-

rithm, is the most popular neural networks in chemistry [1±

4]. The MLP network is constituted by an input layer of

neurons, one or more hidden layers and one output layer. The

number of neurons in the input and hidden layers must be

optimised while the neurons in the output layer is deter-

mined by the number of dependent variables of the system

(for example, three output neurons are employed in a

simultaneous determination of iron, chromium and nickel

in the metallic alloy). The neurons in a speci®c layer are

connected to all neurons of the previous layer and each

connection is characterised by a weight, which re¯ects its

importance in the overall network.

Training a network is an optimisation process, in which

the minimum value of a multidimensional error surface

should be found. This surface, which is determined by

the adjustable parameters of the model, shows many local
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minimum [2]. In the feed forward network, trained by

employing the error back-propagation algorithm, data are

sent from the input layer to the output layer, while the weight

correction is made in the opposite direction, in an iterative

process. Each whole cycle of this process is called epoch.

The weights are corrected in order to minimise the differ-

ence between the expected value and the predicted value.

The root-mean-square error (RMS) is usually employed

to represent this difference, according to the following

equation:

RMS �
�����������������������������������������������Pni

s�1

Pn
i�1�ysi ÿ outsi�2
ni � n

s
(1)

where ysi and outsi are the expected and the predicted values

for the ith component of the sth standard of the training set,

ni the number of standards employed to feed the network and

n the number of output variables [5].

The error back-propagation learning algorithm can

employ the generalised delta rule and the gradient descent

method for correction of the weights, which can be

expressed as

Dwl
ji � Zdl

j outlÿ1
i � mDw

l�previous�
ji (2)

where Dwl
ji is the weight correction of the neuron j in the

layer l, connected to the neuron i in the previous layer; dl
j the

error of the neuron j in the layer l; outlÿ1
i the output signal of

the ith neuron in the layer lÿ1 and Dw
l�previous�
ji the correction

of the weight wl
ji in the previous step of the iterative process.

The first term of this equation makes the network to con-

verge quickly through the steepest descent gradient of the

error surface. The learning rate constant, Z, determines the

speed of the weight correction. Low values allow very slight

changes in weights, and the calculation is very slow while

high values cause rapid changes in weights, decreasing the

training time but increasing the possibility of the calculation

ending in a local minimum instead a global minimum. The

second term of the equation plays an opposite role of the first

one, preventing sudden changes in the direction of succes-

sive iteration steps. High values for the momentum constant,

m, allow the network to change direction slowly, even if

significant changes have been occurred in the gradient of the

error, decreasing the probability of reaching a local mini-

mum.

The neural network training, considering that the number

of neurons in the input layer has been previously de®ned,

consists basically the optimisation of (a) the number of

hidden layers, (b) the number of neurons in each hidden

layer and (c) the values of learning rate and of momentum

constants. Although initial values have been suggested for

these parameters [2,5], their values are determined by trial

and error [3,6].

The ANNs have been applied frequently in different

branches of Analytical Chemistry [2], chie¯y in the ®eld

of sensors including areas such as electronic noses [7,8],

electrochemical sensors [9±11,19], biosensors [12], optical

sensors [6,13±18] and relative humidity [16]. As far as the

determination of gaseous species is concerned, Yang et al.

[10] have quanti®ed H2S and NO2 in binary mixtures, by

employing a sensor array of tin oxide. Huyberechts et al.

[11] have also described the use of a sensor array for

quantitative determination of CH4 (0±0.5%) and CO (0±

1000 ppm) in mixtures of different humidity, with a relative

error <5%. Hongmei et al. [19] have applied ANNs to

determine simultaneously SO2 (10±50 ppm) and relative

humidity (20±90%), employing a piezoelectric quartz crys-

tal sensor covered with triethanolamine, with relative error

of 10%.

Despite the present use of ANNs, it can be noted that in

the recent literature attention has been paid to demonstrate

clearly the potential of ANNs. As a consequence, the neural

network performance has been frequently compared to well-

established chemometric methods, such as PCR and PLS

[20±29]. Results obtained by using ANN are better than

[20,22,23,25,26,28,29] or similar to [21,24,27] those

obtained with other chemometric methods, which assess

the usefulness of ANNs in determinations based on multi-

variate calibration.

The ANNs have been frequently applied to simultaneous

spectrophotometric determinations based on spectral differ-

ences between analytes or between the products of the

reaction of the analytes with a non-selective reagent. How-

ever, recently, ANNs have been also employed in determi-

nations based on kinetic methods [20±22,28,30±33]. In these

cases, spectral differences between the monitored products,

although desired, are not usually essential for the analytical

resolution [22]. The multicomponent kinetic determinations

are usually based on the assumption that (a) reactions occur

according to a ®rst-order or pseudo-®rst order kinetics, (b)

the product formation rates are additives (that is, there are no

interactions between analytes), and (c) the rate constants do

not change in the experimental conditions [31]. However,

rate constants can be altered in every measurement (by slight

variations in the experimental conditions), and from stan-

dard to sample measurements (due to matrix effects) [31]. In

addition, due to synergetic effects, product formation rates

may not be additive, introducing non-linearity in the

responses [28,31]. Considering these aspects, the ANNs

seems to be a suitable tool for such kinetic determinations,

since they can be applied to a non-linear systems, even when

the reaction kinetics are not known.

Recently, Raimundo and Narayanaswamy described the

use of a na®on-crystal violet composite ®lm for determina-

tion of relative humidity [34] and ammonia [35] in air. The

®lm reacts with these species at different reaction rates and

the products also show different spectral characteristics.

This paper, which stems from these studies, is aimed to

determine simultaneously relative humidity (RH) and

ammonia in air, by employing an optical sensor based on

a na®on-crystal violet ®lm and ANN to perform multivariate

calibration. In addition, a kinetic approach is proposed in

order to improve the ANN performance.
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2. Experimental

The construction of the sensor probe and the apparatus

employed in this work have been described elsewhere [34].

In order to improve the mixing between humidity and

ammonia, an empty bubbling ¯ask (50 ml) and a PTFE

tubing (2 m� 1:6 mm i.d.) were connected at the outlet of

the gas blender. A total ¯ow rate of 1000 ml minÿ1 was

always employed.

Sensing ®lms of 5 mm thickness were prepared from a

1:0� 10ÿ3 mol lÿ1 crystal violet and 1:0� 10ÿ2 mol lÿ1

na®on (as sulphonate groups), according to the procedure

described previously [34]. Each and every measurement was

made using a freshly prepared ®lm.

The calibration set was composed by 30 standard solutions,

containing RH in the range of 30±70% (in steps of 10%) and

NH3 in the range of 0±25 ppmv (in steps of 5 ppmv), obtained

by mixing these species in all possible combinations. The

veri®cation (or monitoring) and test sets were composed of 6

and 10 samples, respectively, as listed in Table 1.

3. Procedure

The ®lm was initially exposed to dry air for 2 min and a

reference re¯ectance spectrum was recorded in the 400±

800 nm region. Then, the ®lm was exposed to the gas mixture

and re¯ectance spectra were recorded at 30 s interval, up to a

period of 2 min. Measurements were carried out in triplicate.

4. Neural network architecture and optimisation

A feed-forward neural network with error back propaga-

tion training algorithm was employed for treatment of data.

Input neurons (5), corresponding to re¯ectance intensities

measured at 562, 583, 605, 626 and 660 nm and two output

neurons, for RH and NH3 concentrations, were employed.

One hidden layer was always used. Re¯ectance intensities at

these wavelengths, normalised by taking the re¯ectance

intensities in dry air as reference, were employed to feed

the ANN. These normalised signals were initially scaled in

the range of 0±1, by employing the min±max function. A

linear transfer function was used in the input layer, while a

sigmoid transfer function was employed in the hidden and

output layers. The ANN was optimised with respect to the

number of hidden neurons, momentum and learning rate

constants, employing the Trajan Neural Network Simulator

4.0 software (Trajan Software Ltd., Chester-le-Street, UK).

5. Results and discussion

Na®on-crystal violet composite responds to humidity [34]

and ammonia [35] at different reaction rates, resulting in

products with dissimilar spectral characteristics. Maximum

re¯ectance variations at 630 or 580 nm were found when the

®lm was exposed to humidity or ammonia, respectively. The

reaction with moisture is fast and an equilibrium state is

reached after a period <30 s [34]. The ammonia reaction is

inhibited in the presence of humidity, occurring at a slower

rate with increase in the humidity [35].

Ammonia reacts continuously with the ®lm, and the

response cannot be totally reversed, which allows a signal

recovery lower than 100% [35]. Therefore, every measure-

ment in the present work was carried out using a new ®lm.

Although ®lms could be stored in desiccator for a period of

at least 1 month, without losing their spectral characteristics,

they were always freshly prepared.

Preliminary experiments indicated that the reproducibility

of the re¯ectance spectra become worse if the ®lm was

exposed to the ammonia/humidity mixture for long periods

of time. Fig. 1 shows the normalised spectra obtained by

placing the optical ®bre bundle tip at a distance of 1 mm

from the ®lm and exposing it to a mixture of 60% RH and

15 ppmv NH3, for 0.5 and 4.0 min. As can be noted, the

signals are less reproducible as the exposing time is

increased. Under these conditions, the ®lm becomes blue

in colour after a long period of exposure, indicating it has

been degraded. In fact, the colour change to blue from the

edge of the ®lm to its centre, through a process that is not

reproducible, because the ®lm is not completely homoge-

neous. As the ®lm and the optical ®bre bundle diameters

were 4.5 and 1.5 mm, respectively, the light re¯ected at the

blue region could enter into the optical ®bre and in¯uence

the reproducibility of the measurements.

In order to evaluate the in¯uence of the exposure time and

the distance between the ®lm and the optical ®bre tip on the

reproducibility of the measurements, a series of experiments

were performed, employing two different mixtures contain-

ing 15 ppmv NH3 and 30 or 60% RH. Experiments were

Table 1

Composition of the gaseous mixtures of the monitoring and test sets,

employed in the simultaneous determination of relative humidity and

ammonia in air

Set NH3 (ppm) RH (%)

Monitoring 7 38

Monitoring 11 63

Monitoring 17 42

Monitoring 19 59

Monitoring 21 37

Monitoring 23 52

Test 3 32

Test 9 65

Test 12 43

Test 16 35

Test 16 52

Test 16 65

Test 19 47

Test 20 60

Test 22 36

Test 23 68
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carried out by placing the optical ®bre tip at distances of 1, 2

and 3 mm from the ®lm and measuring re¯ectance inten-

sities at 580 and 630 nm, after 0.5, 1.0 and 2.0 min of

exposure of the ®lm to the mixture. Table 2 shows the

relative standard deviations obtained in these measurements,

after normalisation the signals, taken the re¯ectance inten-

sity in dry air as reference. It can be noted, as a general rule,

that precision is decreased as the exposure time is increased,

while the distance between the ®lm and the ®bre tip remains

the same. A similar behaviour is observed when the distance

between the ®lm and the ®bre tip is increased and the

exposure time is kept constant. These results agree with

those showed in Fig. 1, showing the necessity of taking

measurements before the degradation of the ®lm occurs. It is

also important to emphasise that the signal normalisation is

very ef®cient in order to minimise the re¯ectance intensity

differences that arise when the ®lm is placed at different

distances from the optical ®bre tip. As expected, the

re¯ected signal intensity decreases when the distance is

increased, but normalisation can compensate the oscillation

of the signal. Considering the results obtained in these

experiments, a distance of 1 mm between the ®lm and the

tip was employed, and spectra were scanned at 30 s interval,

up to a period of 2 min.

Fig. 2 shows the normalised signals measured at 580 nm

(higher sensitivity to ammonia) and 630 nm (higher sensi-

tivity to humidity), obtained after exposure times of 30 s and

2 min. When the ®lm is exposed only to humidity, signal

intensities after an exposure time of 30 s are very similar to

those obtained after 2 min, showing that an equilibrium state

is rapidly achieved. However, when the ®lm is exposed to the

mixture of ammonia and moisture, signals obtained after an

exposure time of 2 min are less intense than those obtained

after 30 s, indicating that ammonia has reacted with the ®lm

after reaction with the moisture.

It should be noted in Fig. 2 that response is highly non-

linear. For example, considering the signals obtained with

25 ppmv NH3, the re¯ectance intensity at 60% RH is higher

than those at 50% RH, probably because the reaction with

ammonia is inhibited due to higher humidity content. This

fact means that the generalisation ability of the ANN, that is,

its capability of prediction, can be improved by increasing

the number of standards in the training set, since the

response surface can be better de®ned. Furthermore, the

leave-k-out cross-validation as means of estimating the

generalisation capability of the ANN is not recommended

[2]. For example, if the 60% RH and 25 ppmv NH3 standard

is transferred from training set to the monitoring set (as

would be done in a leave-k-out cross-validation), the gen-

eralisation ability of the ANN would be worsened, as the

information about non-linearity is omitted.

Many wavelengths would be employed as input neurons

in the ANN. However, data reduction is important in order to

avoid irrelevant information such as noise and/or redundan-

cies, to decrease the training time, providing neural network

with better performance. Although methods for variable

selection, such as PCA and PLS have been proposed

[2,4,8], the choice of the wavelengths employed as input

neurons was done by considering the ®lm response to the

species and the availability of commercial LEDs. This

strategy was adopted in order to evaluate the possibility

Fig. 1. Normalised spectra (four replicates) obtained by exposing the film

to 15 ppmv NH3 and 60% RH for (a) 0.5 min and (b) 4 min (distance

between the film and the optical fibre tip � 1 mm).

Table 2

Repeatability of the normalised signals, expressed as relative standard deviation of four measurements, as a function of the distance between the film and the

optical fibre tip and of the exposure time to the gaseous mixture

Exposure

time (min)

Reflectance

intensities (nm)

NH3 (15 ppmv), RH (30%) NH3 (15 ppmv), RH (60%)

1 mm 2 mm 3 mm 1 mm 2 mm 3 mm

0.5 580 1.7 1.9 3.7 1.6 1.3 1.0

630 2.5 3.2 4.1 8.1 5.7 7.0

1.0 580 2.5 2.6 5.2 1.6 2.0 7.3

630 2.7 3.4 4.3 8.0 8.2 23.3

2.0 580 3.5 3.6 6.8 2.9 6.5 19.1

630 2.9 3.6 4.6 12.1 18.1 32.4
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of constructing a portable solid-state instrument [36] for the

simultaneous determination of these species. In this regard,

®ve wavelengths (562, 583, 605, 626 and 600 nm) were

chosen for input neurons since there are commercial LEDs

available with these wavelengths.2

In the optimisation process, the input data were scaled

between 0±1 through the function min±max [2] and a

sigmoid transfer function was used in the hidden and output

layer. Only one hidden layer was employed, as it has been

recommended to solve many analytical problems [3,10]. The

training step was performed by employing the incremental

learning method [2], in which the weights are corrected after

estimating the error of the predicted response. The learning

rate and the momentum constants are usually determined by

trial and error, and different values have been employed

[6,11,12,17]. In the present work, values of 0.1 and 0.9 were

®xed for these constants, respectively, since they seemed to be

reasonable and have also been used by others [17]. Further-

more, attempts of using different values were not successful.

The ANN optimisation was carried out by checking the

RMS error of the monitoring set after every epoch. The

training was always stopped as soon as this error started to

increase, in order to prevent the over-®tting of the network

[2,3]. Each training was performed by altering the number of

neurons in the hidden layer and the network which provided

the lowest RMS error for the monitoring set was considered

as the best one. Afterwards, the generalisation ability of the

ANN was assessed with the test set.

Initially, the network was fed with spectral data obtained

after an exposure time of 2 min, that is, 5 input neurons were

used. The network with 7 neurons in the hidden layer,

trained with 3000 iterations, presented the best performance,

with RMS errors equal to 5.00 and 4.39 for the training and

monitoring sets, respectively. Considering the test set, rela-

tive standard errors of prediction (SEP) of 28.4 and 7.3% for

NH3 and RH were obtained, respectively. Fig. 3 shows the

correlation between the expected and predicted values

obtained in this training and Table 3 lists the results obtained

for the test set, expressed as mean of three measurements.

Although the results for RH can be accepted as reasonable,

those for NH3 lack in accuracy. This fact can be explained

considering that the na®on-crystal violet ®lm is more sen-

sitive to humidity, which also inhibits the ammonia reaction.

This initial strategy employed for the simultaneous deter-

mination of ammonia and relative humidity in air was based

on the spectral differences showed by the ®lm in the pre-

sence of these species. Furthermore, taking into account that

water vapour reacts faster than ammonia with the ®lm [34]

Fig. 2. Response of the nafion-crystal violet film to mixtures of NH3 and RH, measured at 580 nm after a exposure time of (a) 30 s and (b) 2 min and at

630 nm after a exposure time of (c) 30 s and (d) 2 min (signals are average of three measurements).

2 RS catalogue, http://rswww.com.
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and that the reaction rate for ammonia is dependent on the

relative humidity [35], measurements were performed after

an exposure time of 2 min. It was assumed that after this

period of time ammonia would have reacted with the ®lm in

order to be detected, without causing signi®cant degradation

of the ®lm.

As a means of improving the performance of the neural

network, another training was carried out, employing 20

neurons in the input layer. These neurons were de®ned by

the ®ve wavelengths employed previously, whose re¯ec-

tance intensities were measured at 30 s interval, up to a

period of 2 min. The best network, with 7 neurons in the

hidden layer and trained with 3000 iterations, provided RMS

errors of 3.00 and 3.16 for the training and monitoring sets,

respectively. Fig. 4 shows the correlation between the

expected and predicted values for training, monitoring

and test sets, while Table 4 shows the results obtained for

the test set, which presented SEPs of 9.9 and 4.5% for NH3

and RH, respectively. These results indicate that better

performance can be achieved when the ANN is fed with

kinetic data, providing a more ef®cient discrimination for

NH3 and, as a consequence, its concentration can be deter-

mined with better precision and accuracy.

The improvement in the ANN performance can be

explained based on the fact that moisture reacts with the

®lm, reaching an equilibrium state in a time interval <30 s.

Afterwards, variations in the re¯ectance intensities are

caused by the reaction of ammonia, providing a response

surface with more details. Finally, the SEP values obtained

in this work for NH3 and RH can be considered acceptable

Fig. 3. Correlation between the expected and predicted results, employing an optimised neural network with 5 neurons in the input layer and 7 neurons in the

hidden layer (iterations � 3000).

Table 3

Results for the test set obtained by feeding the ANN with reflectance intensities measured after an exposure time of 2 min (input neurons � 5, neurons in the

hidden layer � 7, average of three measurements)

Sample NH3 expected (ppm) NH3 predicted (ppm) S.D. Deviation RH expected (%) RH predicted (%) S.D. Deviation

1 3.0 1.45 0.19 ÿ1.55 32.0 34.45 1.24 2.45

2 9.0 15.30 1.42 6.30 65.0 59.83 2.16 ÿ5.17

3 12.0 20.03 0.37 8.03 43.0 40.89 0.50 ÿ2.11

4 16.0 21.10 0.32 5.10 35.0 32.05 0.74 ÿ2.95

5 16.0 10.84 2.27 ÿ5.16 52.0 52.69 0.35 0.69

6 16.0 15.62 1.24 ÿ0.38 65.0 63.32 2.48 ÿ1.68

7 19.0 21.33 0.04 2.33 47.0 42.44 0.32 ÿ4.56

8 20.0 15.90 2.21 ÿ4.10 60.0 60.97 2.70 0.97

9 22.0 23.58 0.31 1.58 36.0 33.04 0.26 ÿ2.96

10 23.0 23.76 1.71 0.76 68.0 64.84 7.00 ÿ3.16
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for gas analysis at low concentrations, since they are better

than those described in the literature [19].

6. Conclusions

Results obtained in this work show that a ®lm of na®on-

crystal violet composite is useful for the construction of an

optical sensor for simultaneous determination of relative

humidity and ammonia in air. In spite of the irreversible

reaction of ammonia, which makes the procedure for obtain-

ing data to train the ANN time consuming, the disposable

®lm provides good results. Furthermore, once the ANN has

been trained, satisfactory calibration is obtained if the ®lm

composition is not changed. Finally, it has been shown that

the kinetic approach improved the generalisation ability of

the ANN, overcoming the drawbacks that arose from the

difference of sensitivities of the ®lm to humidity and

ammonia.
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